تعداد نشریات | 43 |
تعداد شمارهها | 1,652 |
تعداد مقالات | 13,423 |
تعداد مشاهده مقاله | 30,846,552 |
تعداد دریافت فایل اصل مقاله | 12,142,120 |
The hyper edge-Wiener index of corona product of graphs | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 4، شماره 3، آذر 2015، صفحه 1-9 اصل مقاله (236.28 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2015.6120 | ||
نویسندگان | ||
Abolghasem Soltani1؛ Ali Iranmanesh* 2 | ||
1Tarbiat Modares University | ||
2Department of Mathematics, Tarbiat Modares University, P. O. Box 14115-137, Tehran | ||
چکیده | ||
Let $G$ be a simple connected graph. The edge-Wiener index $W_e(G)$ is the sum of all distances between edges in $G$, whereas the hyper edge-Wiener index $WW_e(G)$ is defined as $W{W_e}(G) = {\frac{1}{2}}{W_e}(G) + {\frac{1}{2}} {W_e^{2}}(G)$, where $ {W_e^{2}}(G)= \sum\limits_{\left\{ {f,g} \right\} \subseteq E(G)} {d_e^2(f,g)}$. In this paper, we present explicit formula for the hyper edge-Wiener index of corona product of two graphs. Also, we use it to determine the hyper edge-Wiener index of some chemical graphs. | ||
کلیدواژهها | ||
Distance؛ Topological index؛ Hyper edge-Wiener index؛ Corona product | ||
مراجع | ||
Y. Alizadeh, A. Iranmanesh, T. Doslic and M. Azari (2014) The edge Wiener index of suspensions, bottlenecks, and thorny graphs Glas. Mat. Ser. III 49 (69), 1-12
P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart (2009) The edge Wiener index of a graph Discrete Math. 309 (10), 3452-3457
J. Devillers and A. Balaban (1999) Topological Indices and Related Descriptions in QSAR and QSPR Gordon and Breech, Amsterdam
A. A. Dobrynin, R. Entringer and I. Gutman (2001) Wiener index of trees: theory and applications Acta Appl. Math. 66, 211-249
A. A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert (2002) Wiener index of hexagonal systems Acta Appl. Math. 72, 247-294
I. Gutman and N. Trinajstic (1972) Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons Chem. Phys. Lett. 17, 535-538
I. Gutman (1997) A property of the Wiener number and its modifications Indian J. Chem. 36A, 128-132
W. Imrich and S. Klavzar (2000) Product graphs: structure and recognition John Wiley \& Sons, New York, USA
A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani (2009) The edge versions of Wiener index MATCH Commun. Math. Computt. Chem. 61 (3), 663-672
A. Iranmanesh, A. S. Kafrani and O. Khormali (2011) A new version of hyper-Wiener index MATCH Commun. Math. Computt. Chem. 65 (1), 113-122
M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner (2009) Some new results on distance-based graph invariants European J. Combin. 30, 1149-1163
D. J. Klein, I. Lukovits and I. Gutman (1995) On the definition of Hyper-Wiener index for cycle-containing structures J. Chem. Inf. Comput. Phys. Chem. Sci. 35, 50-52
D. J. Klein, T. Doslic and D. Bonchev (2007) Vertex-weightings for distance moments and thorny graphs Discrete Appl. Math. 155, 2294-2302
A. Milicevic and N. Trinajstic (2006) Combinatorial enumeration in chemistry, chemical modelling: Applications nd theory (A. Hincliffe, Ed.), RSC Publishing, Cambridge , 405-469
S. Nikolic, N. Trinajstic and Z. Mihalic (1995) The Wiener index: Development and applications Croat. Chem. Acta. 68, 105-129
M. Randic (1993) Novel molecular descriptor for structure property studies Chem. Phys. Lett. 211, 478-483
A. Soltani, A. Iranmanesh and Z. A. Majid (2013) The edge Wiener type topological indices Util. Math. 91, 87-98
R. Todeschini and V. Consonni (2000) Handbook of molecular descriptors Wiley, Weinheim
H. Wiener (1947) Structural determination of paraffin boiling points J. Am. Chem. Soc. 69, 17-20
| ||
آمار تعداد مشاهده مقاله: 4,766 تعداد دریافت فایل اصل مقاله: 3,783 |