تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,339 |
تعداد مشاهده مقاله | 29,949,298 |
تعداد دریافت فایل اصل مقاله | 11,980,145 |
Graphs with fixed number of pendent vertices and minimal first Zagreb index | ||
Transactions on Combinatorics | ||
مقاله 4، دوره 4، شماره 1، خرداد 2015، صفحه 43-48 اصل مقاله (210.65 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2015.6029 | ||
نویسندگان | ||
Ivan Gutman* 1؛ Muhammad Kamran Jamil2؛ Naveed Akhter2 | ||
1University of Kragujevac Kragujevac, Serbia | ||
2Government College University | ||
چکیده | ||
The first Zagreb index $M_1$ of a graph $G$ is equal to the sum of squares of degrees of the vertices of $G$. Goubko proved that for trees with $n_1$ pendent vertices, $M_1 \geq 9\,n_1-16$. We show how this result can be extended to hold for any connected graph with cyclomatic number $\gamma \geq 0$. In addition, graphs with $n$ vertices, $n_1$ pendent vertices, cyclomatic number $\gamma$, and minimal $M_1$ are characterized. Explicit expressions for minimal $M_1$ are given for $\gamma=0,1,2$, which directly can be extended for $\gamma>2$. | ||
کلیدواژهها | ||
degree (of vertex)؛ Zagreb index؛ First Zagreb index؛ extremal graphs | ||
مراجع | ||
S. Chen and W. Liu (2014) Extremal Zagreb indices of graphs with a given number of cut edges Graphs Combin. 30, 109-118
H. Deng (2007) A unified approach to the extremal Zagreb indices of trees, unicyclic graphs and bicyclic graphs MATCH Commun. Math. Comput. Chem. 57, 597-616
B. Furtula, I. Gutman and M. Dehmer (2013) On structure--sensitivity of degree--based topological indices Appl. Math. Comput. 219, 8973-8978
M. Goubko (2014) Minimizing degree--based topological indices for trees with given number of pendent vertices MATCH Commun. Math. Comput. Chem. 71, 33-46
M. Goubko and I. Gutman (2014) Degree--based topological indices: Optimal trees with given number of pendents Appl. Math. Comput. 240, 387-398
M. Goubko and T. R\'eti (2014) Note on minimizing degree--based topological indices of trees with given number of pendent vertices MATCH Commun. Math. Comput. Chem. 72, 633-639
I. Gutman (2013) Degree--based topological indices Croat. Chem. Acta 86, 351-361
I. Gutman and M. Goubko (2013) Trees with fixed number of pendent vertices with minimal first Zagreb index Bull. Int. Math. Virtual Inst. 3, 161-164
I. Gutman and N. Trinajsti\'c (1972) Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons Chem. Phys. Lett. 17, 535-538
I. Gutman and K. C. Das (2004) The first Zagreb index 30 years after MATCH Commun. Math. Comput. Chem. (50), 83-92
R. Kazemi (2013) Probabilistic analysis
of the first Zagreb index Trans. Comb. 2 (2), 35-40
S. Li, H. Yang and Q. Zhao (2012) Sharp bounds on Zagreb indices of cacti with $k$ pendent vertices Filomat 26, 1189-1200
K. Xu, K. C. Das and S. Balachandran (2014) Maximizing the Zagreb indices of $(n,m)$-graphs MATCH Commun. Math. Comput. Chem. 72, 641-654
Q. Zhao and S. Li (2010) Sharp bounds for the Zagreb indices of bicyclic graphs with $k$-pendent vertices Discrete Appl. Math. 158, 1953-1962
| ||
آمار تعداد مشاهده مقاله: 3,907 تعداد دریافت فایل اصل مقاله: 3,284 |