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Abstract. A recursive-circulant G(n; d) is defined to be a circulant graph with n vertices and jumps

of powers of d. G(n; d) is vertex-transitive, and has some strong hamiltonian properties. G(n; d) has a

recursive structure when n = cdm, 1 ≤ c < d [Theoret. Comput. Sci. 244 (2000) 35-62]. In this paper,

we will find the automorphism group of some classes of recursive-circulant graphs. In particular, we will

find that the automorphism group of G(2m; 4) is isomorphic with the group D2·2m , the dihedral group

of order 2m+1.

1. Introduction

An interconnection network can be represented as an undirected graph where a processor is repre-

sented as a vertex and a communication channel between processors as an edge between corresponding

vertices. Measures of the desirable properties for interconnection networks include degree, connectivity,

diameter, fault tolerance, and symmetry [1]. The main aim of this paper is to study the symmetries of

a class of graphs that are useful in some aspects for designing some interconnection networks. In this

paper, a graph G = (V,E) is considered as an undirected graph where V = V (G) is the vertex-set and

E = E(G) is the edge-set. For all the terminology and notation not defined here, we follow [3, 6, 11].

The hypercube Qn of dimension n is the graph with vertex-set {(x1, x2, . . . , xn)|xi ∈ {0, 1}}, two ver-

tices (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are adjacent if and only if xi = yi for all but one i. The graphs

Γ1 = (V1, E1) and Γ2 = (V2, E2) are called isomorphic if there is a bijection α : V1 −→ V2 such that

{a, b} ∈ E1 if and only if {α(a), α(b)} ∈ E2 for all a, b ∈ V1. In such a case the bijection α is called an
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isomorphism. An automorphism of a graph Γ is an isomorphism of Γ with itself. The set of automor-

phisms of Γ, with the operation of composition of functions, is a group, called the automorphism group

of Γ and denoted by Aut(Γ). In most situations, it is difficult to determine the automorphism group

of a graph and this has been the subject of many research papers. Some of the recent works appear in

the references [4, 5, 7, 8, 9, 12]. A permutation of a set is a bijection of it with itself. The group of all

permutations of a set V is denoted by Sym(V ), or just Sym(n) when | V |= n. A permutation group

G on V is a subgroup of Sym(V ). In this case we say that G acts on V . If Γ is a graph with vertex-set

V , then we can view each automorphism as a permutation of V , so Aut(Γ) is a permutation group. Let

G act on V . We say that G is transitive (or G act transitively on V ) if there is just one orbit. This

means that given any two elements u and v of V , there is an element β of G such that β(u) = v.

The graph Γ is called vertex transitive if Aut(Γ) acts transitively on V (Γ). For v ∈ V (Γ) and

G = Aut(Γ), the stabilizer subgroup Gv is the subgroup of G containing all automorphisms which

fix v. In the vertex transitive case all stabilizer subgroups Gv are conjugate in G, and consequently

isomorphic. In this case the index of Gv in G is given by the equation, |G : Gv| = |G|
|Gv | = |V (Γ)|. Let G

be any abstract finite group with identity 1, and suppose that Ω is a set of generators of G, with the

properties :

(i) x ∈ Ω =⇒ x−1 ∈ Ω; (ii)1 /∈ Ω. The Cayley graph Γ = Cay(G,Ω) is the graph whose vertex-set

and edge-set are defined as follows: V (Γ) = G;E(Γ) = {{g, h} | g−1h ∈ Ω}.

The connectivity of a graph Γ is the minimum number of vertices whose removal leaves the remaining

graph disconnected or trivial.

The dihedral group D2n is a group of order 2n, n > 2, generated by two elements α, β such that

o(α) = n, o(β) = 2 and αβ = βα−1.

A recursive circulant G(n; d) is a Cayley graph over an abelian group, in more precise words, the

Cayley graph on the cyclic group Zn, where n = cdm, 1 ≤ c < d, with the generating set S =

{1, n − 1, d, n − d, . . . , dm, n − dm}, if c ̸= 1 and S = {1, n − 1, d, n − d, . . . , dm−1, n − dm−1}, if c = 1.

Several interesting properties of these graphs have been studied in the literature [2, 10]. For example, it

has been proved in [10] that the connectivity of G(2m; 4) is m, which is the best possible. Hypercubes

are one of the most popular interconnection networks being used. Note that the number of vertices of

G(2m; 4) is 2m, which is equal to that of Qm, but the diameter of G(2m; 4) is ⌈3m−1
4 ⌉, which is less than

that of the Hypercube Qm [2].

The following figure shows the graphs G(12; 4) and G(16; 4).
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2. Main results

Lemma 2.1. Let n = cdm, where c, d,m are positive integers, d ≥ 4, 2 ≤ c < d. Let Zn =

{0, 1, 2, . . . , n− 1} be the cyclic group of order n and S = {1, n− 1, d, n− d, . . . , dm, n− dm} ⊂ Zn. Let

x, y, s1, s2 ∈ S, x+ y ̸≡ 0 (mod n) and x ̸= y. If x+ y ≡ s1 + s2 (mod n), then {x, y} = {s1, s2}.

Proof. We know that if α ≡ β (mod l), then −α ≡ −β (mod l), thus it is sufficient to prove the lemma

for the following two cases;

(1) x = di, y = dj and (2) x = di, y = n− dj , where we have 0 ≤ i, j ≤ m and i ̸= j in both cases.

In the first step we show that if di + dj = dk + dl + t(cdm), where t is an integer, then min{i, j} =

min{k, l}, where min{u, v} is the minimum of the integers u, v. Let e = min{i, j} and h = min{k, l}.
If e < h, then e ̸= m, and thus, di−e + dj−e = dk−e + dl−e + t(cdm−e). It follows that d|1 which is a

contradiction since d ≥ 4. By a similar argument, it follows that h < e is again impossible, and thus

we must have e = h. Let i = e = h = k, so that di = dk, which implies that dj = dl + t(cdm). Now

j ̸= l is again impossible and thus, {i, j} = {k, l}. Therefore, the assertion of Lemma 2.1. in the case

that di + dj ≡ dk + dl (mod n) is proved.

Now let di + dj = dk − dl + t(cdm), where k ̸= l and i ̸= j. If we let min{i, j} = i, then by a similar

argument it follows that i = k or i = l. In the first step let i = k, so that dj = −dl + t(cdm). Now

since j < l and l < j are impossible so we must have j = l so that we have 2dj = t(cdm). For c ̸= 2,

this is impossible and for c = 2 it follows that j = m, so we have n − dm = dm = dj = dl. Thus, if

di + dj ≡ dk + n− dl (mod n = 2dm), then {di, dj} = {dk, n− dl}.
If we now let i = l, then 2di = dk−dj+t(cdm). Let c ̸= 2. It then follows that k ̸= j, so i = min{k, j}

and thus, i = k. Therefore, di = −dj + t(cdm) so that, i = j, which is a contradiction.

If we now let i = l and c = 2, then we have 2di = dk − dj + t(2dm). If k = j, then i = m, so

m = i = l and thus, n− dl = dl = di and dk = dj . If k ̸= j, then i = min{k, j}, so that i = k and thus,

di = −dj + t(2dm). This implies that di + dj ≡ 0 (mod n = cdm), which is a contradiction. Now it has

been proved that, if c ̸= 2, then di + dj ≡ dk + n − dl (mod n = cdm) is impossible and if c = 2, then

di + dj ≡ dk + n− dl (mod n = 2dm) implies that {di, dj} = {dk, n− dl}.
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By a similar argument, we can show that if di + dj ≡ n − dk + n − dl (mod n = cdm), then for

i = min{i, j} and k = min{k, l} we must have i = k and thus, 2di + dj ≡ −dl (mod n = cdm).

Since i ̸= m (if i = m, then j = m = i, which is a contradiction), then we must have i = l, so

3di ≡ −dj (mod n = cdm). Now since d ̸= 3, we must have i = j, which is a contradiction. It follows

that since i ̸= j , then di + dj ≡ n− dk + n− dl (mod n = cdm) is impossible.

(2) By a similar argument, it follows that if di + n − dj ≡ s1 + s2 (mod n = cdm), where i ̸= j and

s1, s2 ∈ S, then {di, n− dj} = {s1, s2}. □

The following lemma shows that a similar result holds for the case c = 1.

Lemma 2.2. Let n = dm, where d,m are positive integers, d ≥ 4. Let Zn = {0, 1, 2, . . . , n − 1} be

the cyclic group of order n and S = {1, n− 1, d, n− d, . . . , dm−1, n− dm−1} ⊂ Zn. Let x, y, s1, s2 ∈ S,

x+ y ̸≡ 0 (mod n) and x ̸= y. If x+ y ≡ s1 + s2 (mod n), then {x, y} = {s1, s2}.

The above results are not true for d = 2 or d = 3. For example, letting n = 2m and m > 2, then in

Zn we have, 2m−1+n−2m−2 ≡ 2m−3+2m−3 (mod n), but {2m−1, n−2m−2} ̸= {2m−3, 2m−3}. Also, for

n = 2 · 3m, in Zn we have 3m+n− 3m−1 ≡ 3m−1+3m−1 (mod n), but {3m, n− 3m−1} ̸= {3m−1, 3m−1}.

Theorem 2.3. Let n = cdm, where c, d,m are positive integers, d ≥ 4, 1 ≤ c < d. Let Zn =

{0, 1, 2, ..., n− 1} be the cyclic group of order n and S = {1, n− 1, d, n− d, . . . , dm, n− dm} ⊂ Zn, for

c ̸= 1, and S = {1, n − 1, d, n − d, . . . , dm−1, n − dm−1} ⊂ Zn, for c = 1. If Γ = Cay(Zn, S), then

Aut(Γ) ∼= D2n, where D2n is the dihedral group of order 2n.

Proof. We prove the theorem for the case c ̸= 1 because the proof is similar for c = 1. Let G = Aut(Γ).

We show that G0, the stabilizer of the vertex 0 ( the identity element of the group Zn), is the cyclic

group of order 2. Let f ∈ G0. In the first step we show that f is an automorphism of the group

Zn. Let v, w ∈ S, v ̸= w and v + w ̸= 0. Since v + w − v = w ∈ S, then {v + w, v} ∈ E(Γ)

so that {v + w,w} ∈ E(Γ). Thus {f(v + w), f(v)} ∈ E(Γ) and {f(v + w), f(w)} ∈ E(Γ) so that

f(v+w) = f(v)+s1 and f(v+w) = f(w)+s2, where s1, s2 ∈ S. Note that if u ∈ S, then {0, u} ∈ E(Γ),

so that {f(0), f(u)} = {0, f(u)} ∈ E(Γ). Now since N(0) = S ( N(x) is the set of vertices that are

adjacent to vertex x ), then f(u) ∈ S so that f(S) = S. We now have f(v) + s1 = f(w) + s2 and

thus, f(v) − f(w) = s2 − s1. On the other hand, f is a permutation of Zn and v ̸= w so that,

f(v) ̸= f(w). Thus, by Lemma 2.1. we must have {f(v),−f(w)} = {s2,−s1}. If f(v) = −s1, then we

have f(v +w) = f(v) + s1 = 0 = f(0), and thus v +w = 0, which is a contradiction. So f(v) = s2 and

we have f(v + w) = f(w) + s2 = f(v) + f(w).

We now show that if u ∈ S, then f(2u) = 2f(u). Let 2u ̸= 0. Then f(2u) ̸= 0. Since 2u−u = u ∈ S,

then {2u, u} ∈ E(Γ) so that {f(2u), f(u)} ∈ E(Γ). Thus f(2u) = f(u) + y, where y ∈ S = f(S) and

therefore there is an x ∈ S such that y = f(x) and we have f(2u) = f(u) + f(x). We assert that

f(x) = f(u). If f(x) ̸= f(u), then since f−1 ∈ G0, and by what is proved hitherto 2u = f−1(f(2u)) =

f−1(f(u) + f(x)) = f−1(f(u)) + f−1(f(x)) = u + x. Thus, x = u from which we conclude that

f(x) = f(u) which is a contradiction. Therefore, if u ∈ S and 2u ̸= 0, then f(2u) = 2f(u).
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Now let 2u = 0, ( for n = 2dm and u = dm). If f(u) = u, then 2f(u) = 2u = 0 = f(0) = f(2u). If

f(u) = y ̸= u, then 2f(u) = 2y ̸= 0 so that f−1(2y) = 2f−1(y) = 2u and thus, f(2u) = f(f−1(2y)) =

2y = 2f(u). Note that if n = 2dm, then u = dm is the unique element of S such that 2u = 0.

We now show that if x ∈ S, then f(−x) = −f(x). Let 2x ̸= 0. Then x ̸= −x, so f(x) ̸= f(−x) and

thus, if t = f(x)+ f(−x) ̸= 0, then by what is proved hitherto, we have f−1(t) = f−1(f(x)+ f(−x)) =

f−1(f(x)) + f−1(f(−x)) = x − x = 0 = f−1(0). Thus t = 0 which is a contradiction and therefore

we must have f(x) + f(−x) = 0 so that f(−x) = −f(x). If 2x = 0, then x = −x and we have

f(2x) = f(0) = 2f(x) = 0. thus f(x) = −f(x) = −f(−x) which implies that f(−x) = −f(x).

Therefore if v, w ∈ S and v+w = 0, then w = −v so that we have f(v+w) = f(0) = 0 = f(v)−f(v) =

f(v) + f(−v) = f(v) + f(w).

We have proven that if v, w ∈ S, then f(v + w) = f(v) + f(w). We now wish to extend this, by

induction on k, to the assertion f(k1 + v) = kf(1) + f(v), where 1 and v are in S and k is a positive

integer.

Note that the assertion is true for k = 1. Assume the assertion is true for l < k. Let y = k1 + v. If

1+ v = 0, then 0 = f(0) = f(1+ v) = f(1)+ f(v) and y = (k− 1)1. Thus by the induction assumption

we have f(y) = f(k1 + v) = f((k − 1)1) = (k − 1)f(1) = (k − 1)f(1) + f(1) + f(v) = kf(1) + f(v).

Now let 1 + v ̸= 0 and v ̸= 1. Note that {k1 + v, k1}, {k1 + v, (k − 1)1 + v} ∈ E(Γ) and thus,

{f(k1 + v), f(k1)}, {f(k1 + v), f((k − 1)1 + v)} ∈ E(Γ). Therefore f(k1 + v) = f(k1) + f(u) and

f(k1 + v) = f((k − 1)1 + v) + f(w), where u,w ∈ S. Then f(k1) + f(u) = f((k − 1)1 + v) + f(w).

By the induction hypothesis, we have f(k1) = f((k − 1)1 + 1) = (k − 1)f(1) + f(1) = kf(1) and

thus, f(1) + f(u) = f(v) + f(w) so, 1 + u = v + w. We then have 1 − v = w − u and thus, by

Lemma 2.1 we have {1,−v} = {w,−u}. If 1 = −u, then f(u) = −f(1) so that we have f(k1 + v) =

f(k1) + f(u) = kf(1)− f(1) = f(k− 1) and therefore, k1+ v = (k− 1)1. This implies 1 + v = 0 which

is a contradiction. Therefore, we must have 1 = w implying that v = u. Now we have f(k1 + v) =

f(k1) + f(u) = f(k1) + f(v) = kf(1) + f(v).

Now let v = 1. Since {(k + 1)1, k1} ∈ E(Γ), then {f((k + 1)1), f(k1)} ∈ E(Γ) and thus f((k +

1)1) = f(k1) + f(u), where u ∈ S. If u ̸= 1, then f(k1) + f(u) = f(k1 + u) and thus we have

f((k + 1)1) = f(k1 + u). This implies (k + 1)1 = k1 + u so that u = 1 which is a contradiction.

Therefore, u = 1 and we have f((k + 1)1) = f(k1) + f(u) = (k + 1)f(1). We now have proved that

f(k1 + v) = kf(1) + f(v) for any positive integer k and any v ∈ S.

In particular, we have f(m1) = mf(1) for any positive integer m and 1 ∈ S. The set {1} is a

generating set for the cyclic group Zn and therefore, if a, b ∈ Zn and a = l.1, b = k1, then f(a + b) =

f(l.1 + k1) = f((l + k)1) = (l + k)f(1) = lf(1) + kf(1) = f(l.1) + f(k1) = f(a) + f(b). We now have

proved that the graph automorphism f which fixes the vertex v = 0 is, in fact an automorphism of the

group Zn.

We know that f(S) = S so that f(1) ∈ S. On the other hand, the element 1 is a generating element

of the cyclic group Zn and thus f(1) is a generating element of the cyclic group Zn. However, the

elements of S that can generate the group Zn are 1,−1 = n− 1. It follows that |G0| = 2.
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The graph Γ = Cay(Zn, S) is vertex-transitive because it is a Cayley graph. Thus, |G| = 2n by the

orbit-stabilizer theorem. The group G = Aut(Γ) contains a subgroup isomorphic to the group Zn, say

T = {fx|fx : Zn −→ Zn, fx(v) = x + v x, v ∈ Zn}. It is an easy task to show that G = ⟨f1, g⟩ where

1 ̸= g ∈ G0. It is trivial that ⟨f1, g⟩ ∼= D2n. □

We now pose the following question:

Question. Is Theorem 2.3 also true for the cases d = 2 and d = 3?

Conclusion remarks

In this paper, we have found the automorphism groups of almost all classes of recursive circulant

graphs but, the problem is still open for two classes of these graphs.
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