تعداد نشریات | 43 |
تعداد شمارهها | 1,686 |
تعداد مقالات | 13,791 |
تعداد مشاهده مقاله | 32,396,032 |
تعداد دریافت فایل اصل مقاله | 12,795,239 |
Bounding the rainbow domination number of a tree in terms of its annihilation number | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 2، شماره 3، آذر 2013، صفحه 21-32 اصل مقاله (339.91 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2013.3051 | ||
نویسندگان | ||
Nasrin Dehgardi1؛ Mahmoud Sheikholeslami1؛ Abdollah Khodkar* 2 | ||
1Azarbaijan Shahid Madani University | ||
2University Of West Georgia | ||
چکیده | ||
A $2$-rainbow dominating function (2RDF) of a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v\in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u\in N(v)}f(u)=\{1,2\}$ is fulfilled, where $N(v)$ is the open neighborhood of $v$. The weight of a 2RDF $f$ is the value $\omega(f)=\sum_{v\in V}|f (v)|$. The $2$-rainbow domination number of a graph $G$, denoted by $\gamma_{r2}(G)$, is the minimum weight of a 2RDF of G. The annihilation number $a(G)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $G$ is at most the number of edges in $G$. In this paper, we prove that for any tree $T$ with at least two vertices, $\gamma_{r2}(T)\le a(T)+1$. | ||
کلیدواژهها | ||
annihilation number؛ 2-rainbow dominating function؛ 2-rainbow domination number | ||
مراجع | ||
N. Dehgardai, S. Norouzian and S. M. Sheikholeslami (2013) Bounding the domination number of a tree in terms of its
annihilation number Trans. Comb. 2 (1), 9-16
B. Brechecksar, M. A. Henning and D. F. Rall (2008) Rainbow domination in graphs Taiwanese J. Math. 12, 213-225
B. Brechecksar and T. K. Sumenjak (2007) On the 2-rainbow domination in graphs Discrete Appl. Math. 155, 2394-2400
G. J. Chang, J. Wu and X. Zhu (2010) Rainbow domination on trees Discrete Appl. Math. 158, 8-12
T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin (2009) 2-rainbow domination of generalized
Petersen graphs P(n,2) Discrete Appl. Math. 157, 1932-1937
W. J. Desormeaux, T. W. Haynes and M. A. Henning (2013) Relating the annihilation number and the total domination number
of a tree Discrete Appl. Math. 161, 349-354
C. E. Larson and R. Pepper (2011) Graphs with equal independence and annihilation numbers The Electron. J. Combin. 18, 0
D. Meierling, S. M. Sheikholeslami and L. Volkmann (2011) Nordhaus-Gaddum bounds on
the $k$-rainbow domatic number of a graph Appl. Math. Lett. 24, 1758-1761
R. Pepper (2004) Binding Independence Ph.D. Dissertation, University of Houston
R. Pepper (2009) On the annihilation number of a graph Recent Advances In Electrical
Engineering: Proceedings of the 15th American Conference on Applied Mathematics , 217-220
S. M. Sheikholeslami and L. Volkmann (2012) The k-rainbow domatic number of a graph Discuss. Math. Graph Theory 32, 129-140
Y. Wu and N. Jafari Rad (2013) Bounds on the 2-rainbow domination number of graphs Graphs Combin. 29 (4), 1125-1133
G. Xu (2009) 2-rainbow domination of generalized Petersen graphs P(n,3) Discrete Appl. Math. 157, 2570-2573
| ||
آمار تعداد مشاهده مقاله: 4,501 تعداد دریافت فایل اصل مقاله: 3,152 |