[1] AIM Minimum Rank-Special Graphs Work Group. Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl., 428 no. 7 (2008) 1628–1648.
[2] E. Almodovar, L. DeLoss, L. Hogben, K. Hogenson, K. Murphy, T. Peters and C. A. Ramı́rez, Minimum rank, maximum nullity and zero forcing number for selected graph families, Involve, 3 no. 4 (2010) 371–392.
[3] W. Barrett, S. Butler, M. Catral, S. M. Fallat, H. T. Hall, L. Hogben and M. Young, The maximum nullity of a complete subdivision graph is equal to its zero forcing number, Electron. J. Linear Algebra, 27 (2014) 444–457.
[4] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche and H. van der Holst, Zero forcing parameters and minimum rank problems, Linear Algebra Appl., 433 no. 2 (2010) 401–411.
[5] F. Barioli, S. M. Fallat, H. T. Hall, D. Hershkowitz, L. Hogben, H. van der Holst and B. Shader, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra, 18 (2009) 126–145.
[6] F. Barioli, W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche and H. van der Holst, Parameters related to tree-width, zero forcing and maximum nullity of a graph, J. Graph Theory, 72 no. 2 (2013) 146–177.
[7] A. Berman, S. Friedland, L. Hogben, U. G. Rothblum and B. Shader, An upper bound for the minimum rank of a graph, Linear Algebra Appl., 429 no. 7 (2008) 1629–1638.
[8] S. Butler and M. Young, Throttling zero forcing propagation speed on graphs, Australas. J. Combin., 57 (2013) 65–71.
[9] K. B. Chilakamarri, N. Dean, C. X. Kang and E. Yi, Iteration index of a zero forcing set in a graph, Bull. Inst. Combin. Appl., 64 (2012) 57–72.
[10] R. Davila, T. Kalinowski and S. Stephen, A lower bound on the zero forcing number, Discrete Appl. Math., 250 (2018) 363–367.
[11] R. Davila and F. Kenter, Bounds for the zero forcing number of graphs with large girth, Theory Appl. Graphs, 2 no. 2 (2015) 8 pp.
[12] C. J. Edholm, L. Hogben, M. Huynh, J. LaGrange and D. D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph, Linear Algebra Appl., 436 no. 12 (2012) 4352–4372.
[13] L. Eroh, C. X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs, Acta Math. Sin. (Engl. Ser.), 33 no. 6 (2017) 731–747.
[14] M. Gentner, L. D. Penso, D. Rautenbach and U. S. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math., 214 (2016) 196–200.
[15] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker and M. Young, Propagation time for zero forcing on a graph, Discrete Appl. Math., 160 no. 13-14 (2012) 1994–2005.
[16] T. Kalinowski, N. Kamcev and B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math., 33 no. 1 (2019) 95–115.
[17] M. Khosravi, S. Rashidi and A. Sheikhhosseni, Connected zero forcing sets and connected propagation time of graphs, Trans. Comb., 9 no. 2 (2020) 77–88.
[18] Z. Montazeri and N. Soltankhah, Zero forcing number for Cartesian product of some graphs, Commun. Comb. Optim., 9 no. 4 (2024) 635–646.
[19] Z. Rameh and E. Vatandoost, Some Cayley graphs with propagation time 1, J. Iran. Math. Soc., 2 no. 2 (2021) 111–122.
[20] D. D. Row, A technique for computing the zero forcing number of a gragh with a cut-vertex, Linear Algebra Appl., 436 no. 12 (2012) 4423–4432.
[21] E. Vatandoost, Some cayley graphs with propagation time of at most two, Journal of Algebra and Related Topics, 12 no. 1 (2024) 137–145.