
تعداد نشریات | 43 |
تعداد شمارهها | 1,742 |
تعداد مقالات | 14,209 |
تعداد مشاهده مقاله | 34,924,985 |
تعداد دریافت فایل اصل مقاله | 13,929,916 |
Metric Dimension and Zagreb indices of Essential Ideal Graph of a finite Commutative Ring | ||
Transactions on Combinatorics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 اردیبهشت 1404 | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2025.141755.2182 | ||
نویسندگان | ||
Jamsheena P* ؛ Chithra A V | ||
Department of Mathematics, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India | ||
چکیده | ||
Let $R$ be a commutative ring with unity. The essential ideal graph $\mathcal{E}_{R}$ of $R$ is a graph whose set of vertex consists of all nonzero proper ideals of \textit{R}. Two vertices $\hat{I}$ and $\hat{J}$ are adjacent if and only if $\hat{I}+ \hat{J}$ is an essential ideal. In this paper, we characterize the graph $\mathcal{E}_{R}$ as having a finite metric dimension. Furthermore, we identify that the essential ideal graph and the annihilating ideal graph of the ring $\mathbb{Z}_{n}$ are isomorphic whenever $n$ is a product of distinct primes. In addition, we estimate the metric dimension of the essential ideal graph of the ring $\mathbb{Z}_{n}$. Moreover, we determine the topological indices, namely the first and second Zagreb indices, of $\mathcal{E}_{\mathbb Z_n}$. | ||
کلیدواژهها | ||
Essential ideal graph؛ metric dimension؛ first and second Zagreb indices | ||
آمار تعداد مشاهده مقاله: 19 |