[1] S. I. Adian, Certain torsion-free groups, (in Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971) 459–468.
[2] R. Baer, Endlichkeitskriterien f¨ur Kommutatorgruppen, (German), Math. Ann., 124 (1952) 161–177.
[3] A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko and J. Otal, Extension of a Schur theorem to groups with a central factor with a bounded section rank, J. Algebra, 393 (2013) 1–15.
[4] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York-Berlin, 1982.
[5] H. Dietrich and P. Moravec, On the autocommutator subgroup and absolute centre of a group, J. Algebra 341 (2011) 150–157.
[6] M. R. Dixon, L. A. Kurdachenko and J. Otal, On groups whose factor-group modulo the hypercentre has finite section p-rank, J. Algebra, 440 (2015) 489–503.
[7] M. R. Dixon, L. A. Kurdachenko and A. A. Pypka, On some variants of theorems of Schur and Baer, Milan J. Math., 82 no. 2 (2014) 233–241.
[8] M. R. Dixon, L. A. Kurdachenko and A. A. Pypka, The theorems of Schur and Baer: a survey, Int. J. Group Theory, 4 no. 1 (2015) 21–32.
[9] M. R. Dixon, L. A. Kurdachenko and I. Y. Subbotin, Ranks of groups, The tools, characteristics, and restrictions, John Wiley & Sons, Inc., Hoboken, NJ, 2017.
[10] M. R. Dixon, L. A. Kurdachenko and I. Y. Subbotin, On the relationships between the factors of the upper and lower central series in some non-periodic groups, Int. J. Group Theory, 7 no. 1 (2018) 37–50.
[11] G. Donadze and X. Garc´ıa-Mart´ınez, Some generalisations of Schur’s and Baer’s theorem and their connection with homological algebra, Math. Nachr., 294 no. 11 (2021) 2129–2139.
[12] G. Donadze, M. Ladra and P. Paez-Guillan, Schur’s theorem and its relation to the closure properties of the non-abelian tensor product, Proc. Roy. Soc. Edinburgh Sect. A, 150 no. 2 (2020) 993–1002.
[13] G. Ellis, On groups with a finite nilpotent upper central quotient, Arch. Math. (Basel), 70 no. 2 (1998) 89–96.
[14] G. Ellis, On the relation between upper central quotients and lower central series of a group, Trans. Amer. Math. Soc., 353 no. 10 (2001) 4219–4234.
[15] M. De Falco, F. de Giovanni, C. Musella and Ya. P. Sysak, On the upper central series of infinite groups, Proc. Amer. Math. Soc., 139 no. 2 (2011) 385–389.
[16] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182 (1940) 130-141.
[17] P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc., 52 (1956) 611–616.
[18] P. Hegarty, The absolute centre of a group, J. Algebra 169(3) (1994) 929–935.
[19] N. S. Hekster, Varieties of groups and isologism, J. Aust. Math. Soc., (Ser. A), 46 (1989) 22–60.
[20] B. Huppert, Endliche Gruppen. I, (German) Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.
[21] I. Schur, ¨Uber die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, (German), J. Reine Angew. Math., 127 (1904) 20–50.
[22] Y. Taghavi and S. Kayvanfar, Bounds for the generalization of Baer’s type theorems, Bull. Malays. Math. Sci. Soc., 47 no. 2 (2024) 15 pp.
[23] Y. Taghavi, S. Kayvanfar and M. Parvizi, On Baer’s theorem and its generalizations, Mediterr. J. Math., 18 no. 6 (2021) 20 pp.
[24] Y. Taghavi and S. Kayvanfar, V-closed classes of groups, Proceeding of the 55th Annual Iranian Mathematics Conference, Ferdowsi University of Mashhad, (2024).
[25] G. Karpilovsky, The Schur multiplier, London Mathematical Society Monographs, New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987.
[26] L. A. Kurdachenko, On groups with minimax classes of conjugate elements, (Russian), Infinite groups and adjoining algebraic structures (Russian), Akad. Nauk Ukrainy, Inst. Mat., Kiev, (1993) 160–177.
[27] L. A. Kurdachenko and J. Otal, Generalizations of Baer’s theorem in solvable and nilpotent groups, Mathematica Slovaca, 55 no. 3 (2005) 313–326.
[28] L. A. Kurdachenko and J. Otal, The rank of the factor-group modulo the hypercenter and the rank of the some hypocenter of a group, Cent. Eur. J. Math., 11 no. 10 (2013) 1732–1741.
[29] L. A. Kurdachenko, J. Otal and A. A. Pypka, On the structure and some numerical properties of subgroups and factor-groups defined by automorphism groups, J. Algebra Appl., 14 no. 5 (2015) 18 pp.
[30] L. A. Kurdachenko, J. Otal and A. A. Pypka Relationships between the factors of the upper and lower central series of a group, Bull. Malays. Math. Sci., 39 (2016) 1115–1124.
[31] L. A. Kurdachenko, J. Otal and I. Ya. Subbotin, Artinian modules over group rings, Frontiers in Mathematics, Birkh¨auser Verlag, Basel, 2007.
[32] L. A. Kurdachenko, J. Otal and I. Ya. Subbotin, On a generalization of Baer Theorem, Proc. Amer. Math. Soc., 141 no. 8 (2013) 2597–2602.
[33] L. A. Kurdachenko, I. Ya. Subbotin, On some properties of the upper and lower central series, Southeast Asian Bull. Math., 37 no. 4 (2013) 547–554.
[34] L. A. Kurdachenko and P. Shumyatsky, The ranks of central factor and commutator groups, Math. Proc. Cambridge Philos. Soc., 154 no. 1 (2013) 63–69.
[35] A. Mann, The exponents of central factor and commutator groups, J. Group Theory, 10 no. 4 (2007) 435–436.
[36] N. Yu. Makarenko, rank analogues of Hall’s and Baer’s theorems, Siberian Math. J., 41 no. 6 (2000) 1137–1140.
[37] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Second edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2008.
[38] H. Neumann, Varieties of groups, Springer, 1967.
[39] D. J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York-Berlin, 1982.
[40] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966.
[41] B. A. F. Wehrfritz, Schur’s theorem and Wiegold’s bound, J. Algebra, 504 (2018) 440–444.
[42] J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z., 89 (1965) 345–347.