| تعداد نشریات | 43 |
| تعداد شمارهها | 1,794 |
| تعداد مقالات | 14,645 |
| تعداد مشاهده مقاله | 39,107,424 |
| تعداد دریافت فایل اصل مقاله | 15,203,286 |
A characterization of graphs with upper locating-domination number equal to $n-2$ | ||
| Transactions on Combinatorics | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 05 اسفند 1403 اصل مقاله (615.69 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22108/toc.2025.139873.2128 | ||
| نویسندگان | ||
| Malika Mimouni* 1؛ Lyes Ouldrabah2؛ Noureddine Ikhlef-Eschouf3 | ||
| 1Laboratory, Department of Mathematics (LATSI), Faculty of Sciences, University of Blida 1, P.O.Box 270, Blida, Algeria | ||
| 2Laboratory of Mathematics and its Applications (LMA), Faculty of Technology, Medea University, Medea, Algeria | ||
| 3Laboratory of Mathematics and its Applications (LMA), Faculty of Sciences, Medea University, Medea, Algeria | ||
| چکیده | ||
| A set $D$ of vertices in a graph $G$ is called a dominating set of $G$ if every vertex in $V\left( G\right) \backslash D$ has at least one neighbor in $D$. A dominating set $D$ of $G$ is called a locating-dominating set of $G$ if every two vertices in $V\left( G\right) \backslash D$ have two distinct neighborhood sets. The upper locating-domination number $\Gamma_{L}(G)$ is the maximum cardinality of a minimal locating-dominating set of $G.$ In this paper, we characterize the graphs with $\Gamma_{L}\left( G\right) =n-2$. | ||
| کلیدواژهها | ||
| dominating set؛ locating-dominating set؛ upper locating-domination number | ||
| مراجع | ||
|
[1] M. Blidia, M. Chellali, F. Maffray and A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin., 39 (2007) 219–232. | ||
|
آمار تعداد مشاهده مقاله: 404 تعداد دریافت فایل اصل مقاله: 124 |
||