تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,758 |
تعداد مشاهده مقاله | 32,155,451 |
تعداد دریافت فایل اصل مقاله | 12,731,024 |
Equable kites, trapezoids and cyclic quadrilaterals on the Eisenstein Lattice | ||
Transactions on Combinatorics | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 24 آذر 1403 اصل مقاله (477.48 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2024.140684.2150 | ||
نویسندگان | ||
Christian Aebi1؛ Grant Cairns* 2 | ||
1Collège Calvin Geneva, Switzerland | ||
2Department of Mathematical and Physical Sciences, La Trobe University Melbourne, Australia | ||
چکیده | ||
We show that on the Eisenstein lattice, up to Euclidean motions, there is only one infinite family of equable kites, which is given by the Pell-like equation $3x^2-2=y^2$, and only one single equable trapezoid, which also happens to be the only equable cyclic quadrilateral. | ||
کلیدواژهها | ||
quadrilateral؛ Eisenstein lattice؛ equable | ||
مراجع | ||
[1] C. Aebi and G. Cairns, Lattice equable quadrilaterals I: Parallelograms, Enseign. Math., 67 no. 3-4 (2021) 369–401. [5] C. Aebi and G. Cairns, Less than equable triangles on the Eisenstein lattice, to appear in the July 2025 issue of Math. Gazette., Preprint available at https://arxiv.org/abs/2312.10866. | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 11 |