تعداد نشریات | 43 |
تعداد شمارهها | 1,646 |
تعداد مقالات | 13,378 |
تعداد مشاهده مقاله | 30,105,921 |
تعداد دریافت فایل اصل مقاله | 12,059,547 |
$p$-groups with a small number of character degrees and their normal subgroups | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 مهر 1403 اصل مقاله (430.05 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2024.141029.1897 | ||
نویسندگان | ||
Nabajit Talukdar* ؛ Kukil Kalpa Rajkhowa | ||
Department of Mathematics, Cotton University, Guwahati, India | ||
چکیده | ||
If $G$ be a finite $p$-group and $\chi$ is a non-linear irreducible character of $G$, then $\chi(1)\leq |G/Z(G)|^{\frac{1}{2}}$. In \cite{fernandez2001groups}, Fern'{a}ndez-Alcober and Moret'{o} obtained the relation between the character degree set of a finite $p$-group $G$ and its normal subgroups depending on whether $|G/Z(G)|$ is a square or not. In this paper we investigate the finite $p$-group $G$ where for any normal subgroup $N$ of $G$ with $G'\not \leq N$ either $N\leq Z(G)$ or $|NZ(G)/Z(G)|\leq p$ and obtain some alternate characterizations of such groups. We find that if $G$ is a finite $p$-group with $|G/Z(G)|=p^{2n+1}$ and $G$ satisfies the condition that for any normal subgroup $N$ of $G$ either $G'\not \leq N$ or $N\leq Z(G)$, then $cd(G)=\{1, p^{n}\}$. We also find that if $G$ is a finite $p$-group with nilpotency class not equal to $3$ and $|G/Z(G)|=p^{2n}$ and $G$ satisfies the condition that for any normal subgroup $N$ of $G$ either $G'\not \leq N$ or $|NZ(G)/Z(G)|\leq p$, then $cd(G) \subseteq \{1, p^{n-1}, p^{n}\}$. | ||
کلیدواژهها | ||
Character degrees؛ $p$-groups؛ nilpotency class | ||
مراجع | ||
[1] H. Doostie and A. Saeidi, Finite p-groups with few non-linear irreducible character kernels, Bull. Iranian Math. Soc., 38 no. 2 (2012) 413–422. | ||
آمار تعداد مشاهده مقاله: 41 تعداد دریافت فایل اصل مقاله: 8 |