تعداد نشریات | 43 |
تعداد شمارهها | 1,650 |
تعداد مقالات | 13,398 |
تعداد مشاهده مقاله | 30,194,703 |
تعداد دریافت فایل اصل مقاله | 12,071,708 |
Some results on $\lambda$-design conjecture | ||
Transactions on Combinatorics | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 23 مرداد 1403 اصل مقاله (481.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2024.139121.2102 | ||
نویسنده | ||
Ajeet Kumar Yadav* | ||
Department of Mathematics, St. Gonsalo Garcia College, University of Mumbai, India | ||
چکیده | ||
Let $v$ and $\lambda$ be integers with $0<\lambda<v$. A $\lambda$-design $D$ is a pair $(X, \mathcal{A})$, where $X$ is a finite set with $v$ elements called points and $\mathcal{A}$ is a family of subsets of $X$ called blocks, with $|\mathcal{A}|=|X|$ such that (1) for all $B_i, B_j\in \mathcal{A},$ $i\neq j,$ $|B_i\cap B_j|=\lambda$; (2) for all $B_j\in \mathcal{A},$ $|B_j|=k_j>\lambda$, and not all $k_j$ are equal. The only known examples of $\lambda$-designs are so called of type-1 designs, which are obtained from symmetric designs by a certain complementation procedure. Ryser and Woodall had independently conjectured that all $\lambda$-designs are of type-1. Suppose $r$ and $r^*(r>r^*)$ are replication numbers of $D$ and for distinct points $x$ and $y$ of $D$, let $\lambda(x,y)$ denote the number of blocks of $X$ containing $x$ and $y$. In this paper we investigate the possibilities of $\lambda$-designs to be of type-1 under the condition that $|\lambda(x,y)-\lambda(x,y')|< 2 \left(\dfrac{r-r^*}{r+r^*-2}\right)$. Under this condition, we prove that if $ \dfrac{r-1}{r^*-1} \le 3$, then $\lambda$-design $D$ is of type-1. Also we prove that $D$ has exactly two distinct block sizes. | ||
کلیدواژهها | ||
$\lambda$-designs؛ Ryser-designs؛ Symmetric designs؛ $\lambda$-design conjecture؛ type-1 $\lambda$-designs | ||
مراجع | ||
[1] T. Alraqad and M. S. Shrikhande. Some results on λ-designs with two block sizes, J. Combin. Des., 19 no. 2 (2011) 95–110. [4] N. G. de Bruijn and P. Erdös, On a combinatorial problem, Indagationes Math., 10 (1948) 421–423. [24] A. K. Yadav, R. M. Pawale and M. S. Shrikhande, A note on λ-designs, J. Combin. Des., 28 no. 12 (2020) 893–899. | ||
آمار تعداد مشاهده مقاله: 103 تعداد دریافت فایل اصل مقاله: 33 |