
تعداد نشریات | 43 |
تعداد شمارهها | 1,715 |
تعداد مقالات | 14,054 |
تعداد مشاهده مقاله | 34,041,259 |
تعداد دریافت فایل اصل مقاله | 13,630,775 |
New skew Laplacian energy of simple digraphs | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 2، شماره 1، خرداد 2013، صفحه 27-37 اصل مقاله (495.2 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2013.2833 | ||
نویسندگان | ||
Qingqiong Cai1؛ Xueliang Li* 2؛ Jiangli Song3 | ||
1Center for Combinatorics, nankai University, Tianjin, China | ||
2Center for Combinatorics, Nankai University, Tianjin 300071, China | ||
3Center for Combinatorics, Nankai University, Tianjin, China | ||
چکیده | ||
For a simple digraph $G$ of order $n$ with vertex set $\{v_1,v_2,\ldots, v_n\}$, let $d_i^+$ and $d_i^-$ denote the out-degree and in-degree of a vertex $v_i$ in $G$, respectively. Let $D^+(G)=diag(d_1^+,d_2^+,\ldots,d_n^+)$ and $D^-(G)=diag(d_1^-,d_2^-,\ldots,d_n^-)$. In this paper we introduce $\widetilde{SL}(G)=\widetilde{D}(G)-S(G)$ to be a new kind of skew Laplacian matrix of $G$, where $\widetilde{D}(G)=D^+(G)-D^-(G)$ and $S(G)$ is the skew-adjacency matrix of $G$, and from which we define the skew Laplacian energy $SLE(G)$ of $G$ as the sum of the norms of all the eigenvalues of $\widetilde{SL}(G)$. Some lower and upper bounds of the new skew Laplacian energy are derived and the digraphs attaining these bounds are also determined. | ||
کلیدواژهها | ||
energy؛ Laplacian energy؛ skew energy؛ skew Laplacian energy؛ eigenvalues | ||
مراجع | ||
C. Adiga, R. Balakrishnan and W. So (2010) The shew energy
of a digraph Linear Algebra Appl. 432, 1825-1835
C. Adiga and M. Smitha (2009) On the skew Laplacian energy of a digraph Int. Math. Forum 4 (3), 1907-1914
C. Adiga and Z. Khoshbakht (2009) On some inequalities for the skew Laplacian energgy of digraphs JIPAM. J. Inequal. Pure Appl. Math. 10 (3), 6
D. Cvetkovi$\acute{c}$, P. Rowlinson and
S. Simi$\acute{c}$ (2010) An Introduction to the Theory of Graph
Spectra Cambridge Univ. Press, Cambridge
I. Gutman (1978) The energy of a graph Ber. Math.-Statist. Sekt. Forsch. Graz 103, 1-22
I. Gutman and B. Zhou (2006) Laplacian energy of
a graph Linear Algebra Appl. 414, 29-37
I. Gutman, X. Li and J. Zhang (2009) Graph Energy,
in: M. Dehmer, F. Emmert-Streib (Eds.) Analysis of Complex
Network: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim , 145-174
R. A. Horn and C. R. Johnson (1990) Matrix Analysis Cambridge Univ. Press
M. L. Kragujevac (2006) On the Laplacian energy
of a graph Czech. Math. J. 56 (131), 1207-1213
X. Li, Y. Shi and I. Gutman (2012) Graph Energy Springer, New York
P. Kissani and Y. Mizoguchi (2010) Laplacian energy of directed graphs and minimizing maximum outdegree algorithms Kyushu University Institutional Repository
| ||
آمار تعداد مشاهده مقاله: 5,245 تعداد دریافت فایل اصل مقاله: 3,907 |