تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,758 |
تعداد مشاهده مقاله | 32,158,585 |
تعداد دریافت فایل اصل مقاله | 12,733,730 |
The degree-associated reconstruction number of an unicentroidal tree | ||
Transactions on Combinatorics | ||
مقاله 5، دوره 14، شماره 1، خرداد 2025، صفحه 31-43 اصل مقاله (498.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2024.131563.1938 | ||
نویسندگان | ||
Rajab Ali Borzooei* ؛ Mehrnoosh Shadravan | ||
Department of Mathematics, Shahid Beheshti University, Tehran, Iran | ||
چکیده | ||
As we know, by deleting one vertex of a graph $G$, we have a subgraph of $G$ called a card of $G$. Also, investigation of that each graph with at least three vertices is determined by its multiset of cards, is called the reconstruction conjecture and the minimum number of dacards that determine $G$ is denoted the degree-associated reconstruction number $drn(G)$. Barrus and West conjectured that $drn(G) \leq 2$ for all but finitely many trees. A tree is unicentroidal or bicentroidal when it has one or two centroids, respectively. An unicentroidal tree $T$ with centroid $v$ is symmetrical if for two neighbours of $u$ and $u'$ of $v$, there exists an automorphism on $T$ mapping $u$ to $u'$. In \cite{Shad}, Shadravan and Borzooei proved that the conjecture is true for any non-symmetrical unicentroidal tree. In this paper, we proved that for any symmetrical unicentroidal tree $T$, $drn(T) \leq 2$. So, we concluded that the conjecture is true for any unicentroidal tree. | ||
کلیدواژهها | ||
Reconstruction؛ degree-associated reconstruction number؛ unicentroidal tree | ||
مراجع | ||
[1] K. J. Asciak, M. A. Francalanza, J. Lauri and W. Myrvold, A survey of some open questions in reconstruction numbers, Ars Combin., 97 (2010) 443–456. | ||
آمار تعداد مشاهده مقاله: 123 تعداد دریافت فایل اصل مقاله: 109 |