[1] T. Adam, R. Langrock and C. H. Weiß, Penalized estimation of flexible hidden Markov models for time series of counts, Metron, 77 (2) (2019) 87–104.
[2] R. M. Altman, Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting, J. Amer. Statist. Assoc., 102 (477) (2007) 201–210.
[3] M. Amini, A. Bayat and R. Salehian, hhsmm: an R package for hidden hybrid Markov/semi-Markov models, Comput. Statist., 38 (2022) 1283–1335.
[4] J. Bulla, F. Lagona, A multivariate hidden Markov model for the identification of sea regimes from incomplete skewed and circular time series, J. Agric. Biol. Environ. Stat., 17 (4) (2012) 544–567.
[5] M. S. Bebbington, Identifying volcanic regimes using Hidden Markov Models, Geophys. J. Int., 171 (2) (2007) 921–942.
[6] D. L. Borchers, W. Zucchini, M. P. Heide‐Jorgensen, A. Cañadas and R. Langrock, Using hidden Markov models to deal with availability bias on line transect surveys, Biometrics, 69 (3) 703–713.
[7] F. Cartella, J. Lemeire, L. Dimiccoli and H. Sahli, Hidden semi-Markov models for predictive maintenance, Math. Probl. Eng., (2015) 23 pp.
[8] G. A. Churchill, Stochastic models for heterogeneous DNA sequences, Bull. Math. Biol., 51 (1) 79–94.
[9] R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge university press, 1998.
[10] Paul H. C. Eilers and B. D. Marx, Flexible smoothing with B-splines and penalties, Statist. Sci., 11 (2) (1996) 89–121.
[11] Y. Guédon, Estimating hidden semi-Markov chains from discrete sequences, J. Comput. Graph. Statist., 12 (3) (2003) 604–639.
[12] B. H. Juang and L. R. Rabiner, Hidden Markov models for speech recognition, Technometrics, 33 (3) (1991) 251–272.
[13] G. Kauermann, A note on smoothing parameter selection for penalized spline smoothing, J. Statist. Plann. Inference, 127 (1-2) (2005) 53–69.
[14] C. J. Kim, J. Piger and R. Startz, Estimation of Markov regime-switching regression models with endogenous switching, J. Econometrics, 143 (2) (2008) 263–273.
[15] R. Langrock, B. J. Swihart, B. S. Caffo, N. M. Punjabi and C. M. Crainiceanu, Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms, Stat. Med., 32 (19) (2013) 3342–3356.
[16] R. Langrock, T. Michelot, A.Sohn and T. Kneib, Semiparametric stochastic volatility modelling using penalized splines, Comput. Statist., 30 (2) (2015) 517–537.
[17] R. Langrock, T. Kneib, A. Sohn and S. L. DeRuiter, Nonparametric inference in hidden Markov models using P-splines, Biometrics, 71 (2) (2015) 520–528.
[18] R. Langrock, T. Kneib, R. Glennie and T. Michelot, Markov-switching generalized additive models, Stat. Comput., 27 (1) (2017) 259–270.
[19] V. Leos-Barajas, E. J. Gangloff, T. Adam, R. Langrock, F. M. Van Beest, J. Nabe-Nielsen and J. M. Morales, Multi-scale modeling of animal movement and general behavior data using hidden Markov models with hierarchical structures, J. Agric. Biol. Environ. Stat., 22 (2017) 232–248.
[20] R. Langrock, T. Adam, V. Leos-Barajas, S. Mews, D. L. Miller and Y. P. Papastamatiou, Spline-based nonparametric inference in general state-switching models, Stat. Neerl., 72 (3) (2018) 179–200.
[21] A. Maruotti, Mixed hidden markov models for longitudinal data: An overview, Int. Stat. Rev., 79 (3) (2011) 427–454.
[22] S. Schliehe-Diecks, P. M. Kappeler, and R. Langrock, On the application of mixed hidden Markov models to multiple behavioural time series, Interface focus, 2 (2) (2012) 180–189.
[23] C. Sherlock, T. Xifara, S. Telfer and M. Begon, A coupled hidden Markov model for disease interactions, J. R. Stat. Soc. Ser. C. Appl. Stat., 62 (4) (2013) 609–627.
[24] I. Visser, M. E. J. Raijmakers and P. C. M. Molenaar, Fitting hidden Markov models to psychological data, Sci. Program., 10 (3) (2002) 185–199.
[25] L. R. Welch, Hidden Markov models and the Baum-Welch algorithm, IEEE Inf. Theory Soc. Newsl., 53 (4) (2003) 10–13.
[26] W. Zucchini, D. Raubenheimer and I. L. MacDonald, Modeling time series of animal behavior by means of a latent-state model with feedback, Biometrics, 64 (3) (2008) 807–815.
[27] W. Zucchini, I. L. MacDonald and R. Langrock, Hidden Markov models for time series: an introduction using R, Second edition, Monographs on Statistics and Applied Probability, 150, CRC Press, Boca Raton, FL, 2016.