تعداد نشریات | 43 |
تعداد شمارهها | 1,686 |
تعداد مقالات | 13,786 |
تعداد مشاهده مقاله | 32,349,683 |
تعداد دریافت فایل اصل مقاله | 12,783,139 |
Developing a model for calculating pure gas thermal conductivity at P=1bar using particle swarm optimization algorithm | ||
Gas Processing Journal | ||
مقاله 3، دوره 10، شماره 2، دی 2022، صفحه 13-24 اصل مقاله (831.44 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22108/gpj.2023.135773.1126 | ||
نویسندگان | ||
Amirhossein Oudi1؛ Samaneh Faramarzi2؛ Shiva Yarmohammadian2؛ Yegane Davoodbeygi* 3 | ||
1Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran | ||
2Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran | ||
3Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran | ||
چکیده | ||
One of the most crucial variables in the study of heat transport is thermal conductivity and methods for measuring this variable have long been sought after. In this paper, to achieve the equation for approximation of the thermal conductivity coefficient, 61 experimental data were collected for pure gases in P=1 bar and variable temperature (91.88-1500 K). The proposed model was then obtained using the Particle Swarm Optimization (PSO) algorithm in MATLAB V2015. It includes a variety of hydrocarbon and non-hydrocarbon compounds. The physical properties of pure gases including temperature, critical temperature, critical pressure, molecular weight, viscosity, and heat capacity at constant volume were obtained for pure components and used for prediction of the conductivity of these gases. Also, during the validation phase, the suggested model attained the most accurate prediction withR^2=0.9995. This model is capable of predicting the thermal conductivity coefficient of gases with a mean relative error percentage of 4.67% and mean square error percentage of 2.4210×10-4% compared to actual data. These results are significantly better than those obtained from other models. | ||
کلیدواژهها | ||
heat transfer؛ thermal conductivity؛ pure gas؛ particle swarm optimization algorithm | ||
اصل مقاله | ||
1. Introduction 2. Methodology
To generate the fitting function, one can use the minimizing of the equation 10 (cost function) by the PSO algorithm [53]: Table 2. Parameters of the PSO algorithm 2.2. Data acquisition and analysis Table 3. A list of the compounds utilized in the model's development 3. Results The cost function (equation 10) can be changed with iteration for the best model, as shown in Figure 2. It is clear that the cost function is almost equal to zero, which should be minimized. The correlation between the simulation results and experimental data is illustrated in Figure 3. Table 5 shows the MRE, MSE and values calculated. Table 5. The MRE, MSE and values for the PSO configuration Table 6 shows the comparison of the proposed model with other correlations. The advantage of the proposed equation compared to other models is its simplicity.
Table 6. Comparison of the proposed model with other correlations Table 7. Test of the proposed model Notation
| ||
مراجع | ||
Ghassemi, M., Kamvar, M., & Steinberger-Wilckens, R. (2020). Fundamentals of heat and fluid flow in high temperature fuel cells. Academic Press. Asadi, I., Shafigh, P., Hassan, Z. F. B. A., & Mahyuddin, N. B. (2018). Thermal conductivity of concrete–A review. Journal of Building Engineering, 20, 81-93. Guildner, L. A. (1975). Thermal Conductivity of Gases. III. Some Values of the Thermal Conductivities of Argon, Helium, and Nitrogen from 0° C to 75° C at Pressures of 1× 105 to 2.5× 107 Pascals. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 79(2), 407. Ubbelohde, A. R. (1935). The thermal conductivity of polyatomic gases. The Journal of Chemical Physics, 3(4), 219-223. Chapman, S., & Cowling, T. G. (1990). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge university press. Hirsehfelder, J. O., Curtiss, C. F., & Bird, R. B. (1954). Molecular theory of gases and liquids. New York. Longuet‐Higgins, H. C., & Pople, J. A. (1956). Transport properties of a dense fluid of hard spheres. The Journal of Chemical Physics, 25(5), 884-889. Longuet-Higgins, H. C., & Valleau, J. P. (1958). Transport coefficients of dense fluids of molecules interacting according to a square well potential. Molecular Physics, 1(3), 284-294. Choh, S. T. (1958). The kinetic theory of phenomena in dense gases. University of Michigan. Srivastava, B. N., & Barua, A. K. (1960). Thermal conductivity of binary mixtures of diatomic and monatomic gases. The Journal of Chemical Physics, 32(2), 427-435. Davis, H. T., Rice, S. A., & Sengers, J. V. (1961). On the kinetic theory of dense fluids. IX. The fluid of rigid spheres with a square‐well attraction. The Journal of Chemical Physics, 35(6), 2210-2233. Bogoliubov, N. N., De Boer, J., & Uhlenbeck, G. E. (1962). Studies in statistical mechanics. Interscience, New York. Horrocks, J. K., & McLaughlin, E. (1963). Non-steady-state measurements of the thermal conductivities of liquid polyphenyls. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 273(1353), 259-274. Meixner, J. (1965). Statistical mechanics of equilibrium and non-equilibrium. Statistical Mechanics of Equilibrium and Non-equilibrium. Sengers, J. V. (1966). Divergence in the Density Expansion of the Transport Coefficients of a Two‐Dimensional Gas. The Physics of Fluids, 9(9), 1685-1696. Mathur, S., Tondon, P. K., & Saxena, S. C. (1967). Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Molecular physics, 12(6), 569-579. Tye, R. P., Hayden, R. W., & Spinney, S. C. (1977). Thermal conductivity of selected alloys at low temperatures. In Advances in Cryogenic Engineering (pp. 136-144). Springer, Boston, MA. De Groot, J. J., Kestin, J., & Sookiazian, H. (1974). Instrument to measure the thermal conductivity of gases. Physica, 75(3), 454-482. Healy, J. J., De Groot, J. J., & Kestin, J. (1976). The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+ c, 82(2), 392-408. Pliński, E. F., & Witkowski, J. S. (2001). Prediction of the thermal properties of CO2, CO, and Xe laser media. Optics & Laser Technology, 33(1), 61-66. He, M. G., Liu, Z. G., & Yin, J. M. (2002). New equation of state for transport properties: calculation for the thermal conductivity and the viscosity of halogenated hydrocarbon refrigerants. Fluid Phase Equilibria, 201(2), 309-320. Eslamloueyan, R., & Khademi, M. H. (2009). Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences, 48(6), 1094-1101. Gauthier, S., Giani, A., & Combette, P. (2013). Gas thermal conductivity measurement using the three-omega method. Sensors and Actuators A: Physical, 195, 50-55. Ribeiro, V. G., Zabadal, J. G., Monticelli, C. O., & Borges, V. (2017). Estimating heat transfer coefficients for solid–gas interfaces using the Landau–Teller model. Applied Mathematics and Computation, 301, 135-139. Lang, S., Pollak, S., & Frerich, S. (2019). Development of a method to measure the thermal conductivity of pressurised solutions containing dense gases using 11000 g/mol polydimethylsiloxane and carbon dioxide as example fluid. Fluid Phase Equilibria, 490, 92-100. Cardona, L. F., & Valderrama, J. O. (2020). Physical and transport properties of ionic liquids using the geometric similitude concept and a cubic equation of state. Part 1: Thermal conductivity and speed of sound of pure substances. Journal of Molecular Liquids, 315, 113681. Li, F., Shang, F., Cheng, S., Ma, W., Jin, H., Zhang, X., & Guo, L. (2020). Thermal conductivity measurements of the H2/CO2 mixture using the short-hot-wire method at 323.15–620.05 K and 2.14–9.37 MPa. International Journal of Hydrogen Energy, 45(55), 31213-31224. Kim, D., Liu, H., Yang, X., Yang, F., Morfitt, J., Arami-Niya, A., ... & May, E. F. (2021). Thermal conductivity measurements and correlations of pure R1243zf and binary mixtures of R32+ R1243zf and R32+ R1234yf. International Journal of Refrigeration, 131, 990-999. Liu, H., Yang, F., Yang, X., Yang, Z., & Duan, Y. (2021). Modeling the thermal conductivity of hydrofluorocarbons, hydrofluoroolefins and their binary mixtures using residual entropy scaling and cubic-plus-association equation of state. Journal of Molecular Liquids, 330, 115612. Dehlouz, A., Jaubert, J. N., Galliero, G., Bonnissel, M., & Privat, R. (2022). Combining the entropy-scaling concept and cubic-or SAFT equations of state for modelling thermal conductivities of pure fluids. International Journal of Heat and Mass Transfer, 196, 123286. Liu, Y., Wu, C., Zheng, X., & Li, Q. (2022). Modeling thermal conductivity of liquid hydrofluorocarbon, hydrofluoroolefin and hydrochlorofluoroolefin refrigerants. International Journal of Refrigeration. Niksirat, M., Aeenjan, F., & Khosharay, S. (2022). Introducing hydrogen bonding contribution to the Patel-Teja thermal conductivity equation of state for hydrochlorofluorocarbons, hydrofluorocarbons and hydrofluoroolefins. Journal of Molecular Liquids, 351, 118631. Rottmann, M., & Beikircher, T. (2022). Pressure dependent effective thermal conductivity of pure and SiC-opacified expanded perlite between 293 K and 1073 K. International Journal of Thermal Sciences, 179, 107652. Yu, K., Wang, X., & Wang, Z. (2016). Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization. Knowledge-Based Systems, 96, 156-170. Cai, P., Nie, W., Chen, D., Yang, S., & Liu, Z. (2019). Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel, 239, 623-635. Liu, Q., Nie, W., Hua, Y., Peng, H., Liu, C., & Wei, C. (2019). Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement. Building and Environment, 147, 444-460. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 520(1-2), 1-19. Parwekar, P., Rodda, S., & Vani Mounika, S. (2018). Comparison between genetic algorithm and PSO for wireless sensor networks. In Smart Computing and Informatics (pp. 403-411). Springer, Singapore. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE. Buyukada, M. (2016). Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation. Bioresource Technology, 216, 280-286. Song, C. (2011, July). Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm. In 2011 Second International Conference on Mechanic Automation and Control Engineering (pp. 2354-2357). IEEE. Safari, H., & Jamialahmadi, M. (2014). Thermodynamics, kinetics, and hydrodynamics of mixed salt precipitation in porous media: Model development and parameter estimation. Transport in porous media, 101(3), 477-505. Farajnezhad, A., Afshar, O. A., Khansary, M. A., Shirazian, S., & Ghadiri, M. (2016). Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods. Fluid Phase Equilibria, 417, 181-186. Moeini, P., & Bagheri, A. (2020). Adsorption kinetic modeling of toxic vapors on activated carbon in the batch reactor. Research on Chemical Intermediates, 46(12), 5547-5566. de Paulo, E. H., Folli, G. S., Nascimento, M. H., Moro, M. K., da Cunha, P. H., Castro, E. V., ... & Filgueiras, P. R. (2020). Particle swarm optimization and ordered predictors selection applied in NMR to predict crude oil properties. Fuel, 279, 118462. Troudi, H., Ghiss, M., Ben Guedria, N., Ellejmi, M., & Tourki, Z. (2022). A new Sauter mean diameter correlation suited for the gas cross flow in packed bed reactors based on PSO optimization algorithm. Separation Science and Technology, 1-24. Farajpour, E., Behbahani, T. J., & Ghotbi, C. (2022). A new experimental and theoretical approach for viscosity Iranian heavy crude oils based on tuning friction theory and friction volume theory parameters. Inorganic Chemistry Communications, 139, 109319. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). Ieee. Zhang, Y., & Wu, L. (2011). A hybrid TS-PSO optimization algorithm. Journal of Convergence Information Technology, 6(5), 169-174. Darvishi, R., Esfahany, M. N., & Bagheri, R. (2016). Numerical study on increasing PVC suspension polymerization productivity by using PSO optimization algorithm. International Journal of Plastics Technology, 20(2), 219-230. Pranava, G., & Prasad, P. V. (2013, February). Constriction coefficient particle swarm optimization for economic load dispatch with valve point loading effects. In 2013 international conference on power, energy and control (ICPEC) (pp. 350-354). IEEE. Rao, P. S., Varma, G. P., & Prasad, C. D. (2020, October). Identification of linear and non linear curve fitting models using particle swarm optimization algorithm. In AIP Conference Proceedings (Vol. 2269, No. 1, p. 030040). AIP Publishing LLC. Rajpoot, V., Srivastava, D. K., & Saurabh, A. K. (2014). Optimization of I-shape microstrip patch antenna using PSO and curve fitting. Journal of Computational Electronics, 13(4), 1010-1013. Green, D. W., & Southard, M. Z. (2019). Perry's chemical engineers' handbook. McGraw-Hill Education. Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids. Robert, D. (1965). Thermal Conductivity of Gases and Liquids. Eucken, A. (1911). On the temperature dependence of the thermal conductivity of several gases. Phys. Z, 12(1101-1107), 17. Gregory, H. (1928). The thermal conductivities of oxygen and nitrogen. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 118(780), 594-607. Mann, W. B., & Dickins, B. G. (1931). The thermal conductivities of the saturated hydrocarbons in the gaseous state. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 134(823), 77-96. Gratch, S. (1950). Discussion:“New Measurements of the Heat Conductivity of Steam and Nitrogen”(Keyes, FG, and Sandell, Jr., DJ, 1950, Trans. ASME, 72, pp. 767–775). Transactions of the American Society of Mechanical Engineers, 72(6), 776-776. Sherratt, G. G., & Griffiths, E. (1939). VI. A hot wire method for the thermal conductivities of gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(180), 68-75. Zhao, Z., Wang, J., Sun, B., Arowo, M., & Shao, L. (2018). Mass transfer study of water deoxygenation in a rotor–stator reactor based on principal component regression method. Chemical Engineering Research and Design, 132, 677-685. Liu, Y., Hong, W., & Cao, B. (2019). Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy, 188, 116091. Farzaneh-Gord, M., Rahbari, H. R., Mohseni-Gharesafa, B., Toikka, A., & Zvereva, I. (2021). Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach. Journal of Petroleum Science and Engineering, 202, 108427. Misic, D., & Thodos, G. (1961). The thermal conductivity of hydrocarbon gases at normal pressures. AIChE Journal, 7(2), 264-267. Misic, D., & Thodos, G. (1963). Atmospheric Thermal Conductivities of Gases of Simple Molecular Structure. Journal of Chemical and Engineering Data, 8(4), 540-544. Bromley, L. A. (1952). Thermal conductivity of gases at moderate pressures. United States Atomic Energy Commission, Technical Information Service. Stiel, L. I., & Thodos, G. (1964). The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE Journal, 10(1), 26-30. | ||
آمار تعداد مشاهده مقاله: 144 تعداد دریافت فایل اصل مقاله: 147 |