
تعداد نشریات | 43 |
تعداد شمارهها | 1,706 |
تعداد مقالات | 13,972 |
تعداد مشاهده مقاله | 33,573,539 |
تعداد دریافت فایل اصل مقاله | 13,311,768 |
Gray isometries for finite $p$-groups | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 2، شماره 1، خرداد 2013، صفحه 17-26 اصل مقاله (488.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2013.2762 | ||
نویسنده | ||
Reza Sobhani* | ||
چکیده | ||
We construct two classes of Gray maps, called type-I Gray map and type-II Gray map, for a finite $p$-group $G$. Type-I Gray maps are constructed based on the existence of a Gray map for a maximal subgroup $H$ of $G$. When $G$ is a semidirect product of two finite $p$-groups $H$ and $K$, both $H$ and $K$ admit Gray maps and the corresponding homomorphism $\psi:H\longrightarrow {\rm Aut}(K)$ is compatible with the Gray map of $K$ in a sense which we will explain, we construct type-II Gray maps for $G$. Finally, we consider group codes over the dihedral group $D_8$ of order 8 given by the set of their generators, and derive a representation and an encoding procedure for such codes. | ||
کلیدواژهها | ||
Finite group؛ Code؛ Gray map؛ Isometry | ||
مراجع | ||
A. A. Nechaev (1991) Kerdock code in a cyclic form Discrete Math. Appl. 1, 365-384
A. R. Hammons, P. V. Kummar, A. R. Calderbank, N. J. A. Sloane and P. Sole (1994) The ${\mathbb Z}_4$
linearity of Kerdock, Preparata, Goethals, and related codes IEEE Trans. Inform. Theory 40, 301-319
A. R. Calderbank and G. McGuire (1997) Construction of a $(64,2^{37},12)$ code via Galois rings Des. Codes Cryptogr. 10, 157-165
M. Greferath and S. E. Schmidt (1999) Gray isometries for finite chain rings and a nonlinear ternary $(36,3^{12},15)$-code IEEE Trans. Inform. Theory 45, 2522-2524
I. M. Duursma, M. Greferath, S. Litsyn, and S. E. Schmidt (2001) A ${\mathbb Z}_8$-linear lift of the binary Golay code and a
non-linear binary $(96, 2^{37}, 24)$-code IEEE Trans. Inform. Theory 47, 1596-1598
M. Kiermaier and J. Zwanzger (2011) A ${\mathbb Z}_4$-linear code of high minimum Lee distance derived from
a hyperoval Adv. Math. Commun. 5, 275-286
I. Constantinescu and W. Heise (1997) A metric for codes over residue class rings Problems Inform. Transmission 33, 208-213
H. Tapia-Recillas and G. Vega (2003) Some constacyclic codes over ${\mathbb Z}_{2^k}$ and binary quasi-cyclic
codes Discrete Appl. Math. 128, 305-316
S. Ling and T. Blackford (2002) ${\mathbb Z}_{p^{k+1}}$-linear codes IEEE Trans. Inform. Theory 48, 2592-2605
J. F. Qian, L. N. Zhang and S. X. Zhu (2006) $(1+u)$ Constacyclic and cyclic codes over ${\mathbb F}_2+u{\mathbb F}_2$ Appl. Math. Lett. 19, 820-823
J. F. Qian, L. N. Zhang and S. X. Zhu (2006) Constacyclic and cyclic codes over ${\mathbb F}_2+u{\mathbb F}_2+u^2{\mathbb F}_2$ IEICE Trans. Fundamentals E89-A, 1863-1865
R. Sobhani and M. Esmaeili (2010) Some Constacyclic and cyclic codes over ${\mathbb F}_q[u]/\left$ IEICE Trans. Fundamentals E93-A, 808-813
G. D. Forney (1992) On the Hamming distance properties of group codes IEEE Trans. Inform. Theory 38, 1797-1801
| ||
آمار تعداد مشاهده مقاله: 7,572 تعداد دریافت فایل اصل مقاله: 4,050 |