تعداد نشریات | 43 |
تعداد شمارهها | 1,676 |
تعداد مقالات | 13,678 |
تعداد مشاهده مقاله | 31,705,575 |
تعداد دریافت فایل اصل مقاله | 12,527,186 |
Total Roman domination and $2$-independence in trees | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 13، شماره 3، آذر 2024، صفحه 213-223 اصل مقاله (460.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.134483.2005 | ||
نویسندگان | ||
Hossein Abdollahzadeh Ahangar* 1؛ Marzieh Soroudi2؛ Jafar Amjadi2؛ Seyed Mahmoud Sheikholeslami2 | ||
1Department of Mathematics Babol Noshirvani University of Technology Shariati Ave., Babol, Iran | ||
2Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran | ||
چکیده | ||
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {\em total Roman dominating function} on a graph $G$ is a function $f:V\rightarrow \{0,1,2\}$ satisfying the following conditions: (i) every vertex $u$ {\color{blue}such that} $f(u)=0$ is adjacent to at least one vertex $v$ {\color{blue}such that} $f(v)=2$ and (ii) the subgraph of $G$ induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function $f$ is the value, $f(V)=\Sigma_{u\in V(G)}f(u)$. The {\em total Roman domination number} $\gamma_{tR}(G)$ of $G$ is the minimum weight of a total Roman dominating function of $G$. A subset $S$ of $V$ is a $2$-independent set of $G$ if every vertex of $S$ has at most one neighbor in $S$. The maximum cardinality of a $2$-independent set of $G$ is the $2$-independence number $\beta_2(G)$. These two parameters are incomparable in general, however, we show that if $T$ is a tree, then $\gamma_{tR}(T)\le \frac{3}{2}\beta_2(T)$ and we characterize all trees attaining the equality. | ||
کلیدواژهها | ||
total Roman dominating function؛ total Roman domination number؛ $2$-independent set؛ $2$-independence number | ||
مراجع | ||
[1] H. Abdollahzadeh Ahangar, Trees with total Roman domination number equal to Roman domination number plus its domination number: complexity and structural properties, AKCE Int. J. Graphs and Combin., 19 (2022) 74–78. [17] J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), Wiley-Intersci. Publ., Wiley, New York, 1985 301–311. [21] M. A. Henning and A. Yeo, Total domination in graphs, (Springer Monographs in Mathematics) (2013). | ||
آمار تعداد مشاهده مقاله: 142 تعداد دریافت فایل اصل مقاله: 218 |