تعداد نشریات | 43 |
تعداد شمارهها | 1,640 |
تعداد مقالات | 13,343 |
تعداد مشاهده مقاله | 29,968,703 |
تعداد دریافت فایل اصل مقاله | 11,992,370 |
Non-inner automorphisms of order $p$ in finite $p$-groups of coclass $4$ and $5$ | ||
International Journal of Group Theory | ||
مقاله 7، دوره 13، شماره 1، خرداد 2024، صفحه 97-114 اصل مقاله (482.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2023.135843.1816 | ||
نویسنده | ||
Patali Komma* | ||
Ms. Komma Patali Ph.D. Candidate School of Mathematics, IISER Thiruvananthapuram, Thiruvaanthapuram, India | ||
چکیده | ||
A long-standing conjecture asserts that every finite nonabelian $p$-group has a non-inner automorphism of order $p$. This paper proves the conjecture for finite $p$-groups of coclass $4$ and $5$ ($p\ge 5$). We also prove the conjecture for an odd order nonabelian $p$-group $G$ with cyclic center satisfying $C_G(G^p\gamma_3(G))\cap Z_3(G)\le Z(\Phi(G))$. | ||
کلیدواژهها | ||
Finite $p$-groups؛ Non-inner automorphisms؛ Coclass | ||
مراجع | ||
[1] A. Abdollahi, Finite p-groups of class 2 have noninner automorphisms of order p, J. Algebra, 312 (2007) 876–879. [2] A. Abdollahi, and S. Mohsen Ghoraishi, On noninner automorphisms of 2-generator finite p-groups, Comm. Algebra, 45 (2017) 3636–3642. [3] A.Abdollahi, Powerful p-groups have non-inner automorphisms of order p and some cohomology, J. Algebra, 323 (2010) 779–789. [4] A. Abdollahi, S. M. Ghoraishi and B. Wilkens, Finite p-groups of class 3 have noninner automorphisms of order p, Beitr. Algebra Geom., 54 (2013) 363–381. [5] A. Abdollahi, S. M. Ghoraishi, Y. Guerboussa, M. Reguiat, and B. Wilkens, Noninner automorphisms of order p for finite p-groups of coclass 2, J. Group Theory, 17 (2014) 267–272. [6] Y. Berkovich, Groups of prime power order, 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. [7] G. Cutolo, On a question about automorphisms of finite p-groups, J. Group Theory, 9 (2006) 231–250. [8] M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra, 250 (2002) 283–287. [9] G. A. Fernández-Alcober, J. González-Sánchez and A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J. Math., 166 (2008) 393–412. [10] W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra, 4 (1966) 1–2. [11] S. Mohsen Ghoraishi, On noninner automorphisms of finite nonabelian p-groups, Bull. Aust. Math. Soc., 89 (2014) 202–209. [12] S. Mohsen Ghoraishi, A note on automorphisms of finite p-groups, Bull. Aust. Math. Soc., 87 (2013) 24–26. [13] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, 143, Springer-Verlag, Berlin-New York, 1970. [14] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967. [15] A. R. Jamali and M. Viseh, On the existence of noninner automorphisms of order two in finite 2-groups, Bull. Aust. Math. Soc., 87 (2013) 278–287. [16] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Mathematical Society Monographs, New Series, 27, Oxford Science Publications, Oxford University Press, Oxford, 2002. [17] H. Liebeck, Outer automorphisms in nilpotent p-groups of class 2, J. London Math. Soc., 40 (1965) 268–275. [18] A. Mann, Groups with few class sizes and the centralizer equality subgroup, Israel J. Math., 142 (2004) 367–380. [19] V. D. Mazurov and E. I. Khukhro (eds.), Unsolved problems in group theory, The Kourovka notebook, augmented ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995. [20] J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009. [21] M. Ruscitti, L. Legarreta and M. K. Yadav, Non-inner automorphisms of order p in finite p-groups of coclass 3, Monatsh. Math., 183 (2017) 679–697. [22] P. Schmid, A cohomological property of regular p-groups, Math. Z., 175 (1980) 1–3. [23] M. Shabani-Attar, Existence of noninner automorphisms of order p in some finite p-groups, Bull. Aust. Math. Soc., 87 (2013) 272–277. | ||
آمار تعداد مشاهده مقاله: 188 تعداد دریافت فایل اصل مقاله: 164 |