[1] ا. ممتحن، در بهار اتفاق میافتد، فرهنگ و اندیشه ریاضی، انجمن ریاضی ایران، شماره 39 36--55.
[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley publishing Company, 1994.
[3] C. J. Ash, A consequence of the axiom of choice, J. Austral. Math. Soc., 19 (1975) 306–308.
[4] B. Banaschewski, Algebraic closure without choice, Z. Math. Logik Grundlag. Math., 38 (1992) 383–385.
[5] J. Bell and D. Fremlin, A geometric form of the axiom of choice, Fund. Math., 77 (1972) 167–170.
[6] C. E. Blair, The Baire category theorem implies the principle of dependent choices, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25 (1977) 933–934.
[7] A. Blass, Existence of bases implies the axiom of choice, Amer. Math. Soc., Providence, RI, 31 (1984) 31–33.
[8] N. Bruuner, Sequential continuity, Kyungpook Math. J., 22 (1982) 233–233.
[9] N. Brunner, Realisierung und auswahlaxiom, (German), Arch. Math. (Brno), 20 (1984) 39–42.
[10] G. Cantor, (in German), Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen, (German), J. Reine
Angew. Math., 77 (1874) 258–262.
[11] G. Cantor, Ein beitrag zur mannigfaltigkeitslehre, (in German), J. Reine Angew. Math., 84 (1878) 242–258.
[12] G. Cantor, Ueber unendliche, lineare Punktmannichfaltigkeiten, (German), Math. Ann., 21 (1883) 545–591.
[13] P. J. Cohen, The independence of the axiom of choice, Stanford Digital Repository, (1963) 1-34, .
[14] O. De La Cruz and C. A. Di Prisco, Weak forms of the axiom of choice and partitions of infinite sets, Kluwer Academic Publishers, Springer, Dordrecht, 1998 47-70.
[15] S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math., 56 (1964) 325–345.
[16] A. F. D. Fellhauer, On the relation of three theorems of analysis to the axiom of choice, J. Log. Anal., 9 (2017) 1–23.
[17] J. Ferreirós, Labyrinth of thought: a history of set theory and its role in modern mathematics, 2nd edition, Birkhauser Basel Publication, 2007.
[18] G. Frege, Philosophical and mathematical correspondence, Edited and with an introduction by Gottfried Gabriel, Hans Hermes, Friedrich Kambartel, Christian Thiel and Albert Veraart, Abridged from the German edition and with a preface by Brian McGuinness, Translated from the German by Hans Kaal, With an appendix by Philip E. B. Jourdain. University of Chicago Press, Chicago, Ill., 1980.
[19] K. Gödel, The consistency of the axiom of choice and of the generalized continuum-hypothesis, Proceeding of the National Academy of Sciences USA, 24 (1938) 556–557.
[20] K. Gödel, The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, (Russian), Uspehi Matem. Nauk (N.S.), 3 (1948) 96–149.
[21] J. Gray, Did Poincaré say “set theory is a disease”?, Math. Intelligencer, 13 (1991) 19–22.
[22] J. Halpern and D. Levy, The boolean prime ideal theorem does not imply the axiom of choice, Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 13 Part I (1971) 83–134.
[23] F. Hartogs, Über das problem der wohlordnung, (German), Math. Ann., 76 (1915) 438–443.
[24] F. Hausdorff, Der potenzbegriff in der mengenlehre (the concept of power in set theory), (in German), Jahresbericht der Deutschen Mathematiker-Vereinigung, 13 (1904) 569–571.
[25] F. Hausdorff, Die graduierung nach dem endverlauf (the graduation of the ending process), (in German), Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse, 31 (1909) 296–334.
[26] F. Hausdorff, Mengenlehre (set theory), 2nd edition, Berlin-Leipzig de Gruyter, 1927 (1nd edition 1914, 3nd edition 1935, translated to english 1957).
[27] L. A. Henkin, Metamathematical theorems equivalent to the prime ideal theorems for Boolean algebras, Bull. Amer. Math. Soc., 60 (1954) 387–388.
[28] H. Herrlich, Axiom of choice, Mathematical Logic and Foundations, 1876, Springer-Verlag Berlin Heidelberg, 2006.
[29] D. Hilbert, Über das Unendliche, (German), Math. Ann., 95 (1926) 161–190.
[30] W. Hodges, Krull implies zorn, J. London Math. Soc. (2), 19 (1979) 285–287.
[31] P. E. Howard, Subgroups of a free group and the axiom of choice, J. Symbolic Logic, 50 (1985) 458–467.
[32] P. E. Howard and J. E. Rubin, Consequences of the axiom of choice, Mathematical Surveys and Monographs, 59,
American Mathematical Society, Providence, RI, 1998.
[33] P. E. Howard and J. E. Rubin, The Boolean prime ideal theorem plus countable choice do [does] not imply dependent choice, Math. Logic Quart., 42 (1996) 410–420.
[34] P. E. Howard and M. Yorke, Maximal p-subgroups and the axiom of choice, Notre Dame J. Formal Logic, 28 (1987) 276–283.
[35] T. Jech, The Axiom of choice, Studies in Logic and the Foundations of Mathematics, 75, North Holland, 1973.
[36] J. Łoś, and C. Ryll–Nardzewski, On the application of Tychonoff’s theorem in mathematical proofs, Fund. Math., 38 (1951) 233–237.
[37] W. A. J. Luxemburg, Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, 1969, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif.), Holt, Rinehart and Winston, New York, 1967 123–137
[38] A. Karagila, Downward löwenheim–skolem theorems and choice principles, 2014, .
[39] J. Kelley, The Tychonoff product theorem implies the axiom of choice, Fund. Math., 37 (1950) 75–76.
[40] K. Keremedis, Some equivalents of AC in algebra, Algebra Universalis, 36 (1996) 564–572.
[41] M. Kline, Mathematical thought from ancient to modern times, Oxford University Press, New York, 1972.
[42] J. König, Zum kontinuum-problem (on the continuum problem), (in German), Vethandlungen des Diitten Internal
Mathematiker Kongresses in Heidelberg, 3 (1905) 144–147.
[43] C. Kuratowski, Une Méthode d’élimination des nombres transfinis des raisonnements mathématiques, Fund. Math., 3 (1922) 76–108.
[44] G. H. Moore, Zermelo’s axiom of choice: its origins, development, and influence, Springer-Verlag New York, 1982.
[45] J. Pawlikowski, The Hahn-Banach theorem implies the Banach-Tarski paradox, Fund. Math., 138 (1991) 21–22.
[46] H. Royden, Real analysis, 4nd edition, Prentice Hall, 2010.
[47] H. Rubin, and J. E. Rubin, Equivalents of the axiom of choice, II, Studies in Logic and the Foundations of Mathematics, 116, North-Holland Publishing Co., Amsterdam, 1985.
[48] H. Rubin and J. E. Rubin, Equivalents of the axiom of choice, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam-London, 1970,
[49] B. Russell, Mathematical logic as based on the theory of types, Amer. J. Math., 30 (1908) 222–262.
[50] D. Scott, The theorem on maximal ideals in lattices and the axiom of choice, Bull. Amer. Math. Soc., 60 (1954) pp. 83.
[51] A. Tarski, Sur les Ensembles Finis (On Finite Sets), (in Ferench), Fund. Math., 6 (1924) 45–95.
[52] A. N. Whitehead and B. Russell, Principia mathematica, Cambridge University Press, 1910.
[53] E. Zermelo, Beweis, daß jede Menge wohlgeordnet werden kann, (German), Math. Ann., 59 (1904) 514–516.
[54] E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre. I. (German), Math. Ann., 65 (1908) 261–281.
[55] E. Zermelo, Ernst zermelo - gesammelte werke (collected works), (Editors: Ebbinghaus, H. D. and Kanamori, A. and Fraser, C. G.), 1, Springer-Verlag Berlin Heidelberg, 2010.
[56] M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc., 41 (1935) 667–670.