[1] E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Benjamin-Cummings Lecture Note Series,
58, Benjamin/Cummings, London, 1984.
[2] D. Crnković and H. Kharaghani, Divisible design digraphs, Algebraic design theory and Hadamard matrices, Springer Proc. Math. Stat., 133, Springer, Cham, 2015 43–60.
[3] Database of small strictly Cayley-Deza graphs, Available at: http://alg.imm.uran.ru/dezagraphs/main.html,
Accessed on 5/2/2023.
[4] A. Duval, A directed graph version of strongly regular graphs, J. Combin. Theory Ser. A, 47 (1988) 71–100.
[5] M. Erickson, S. Fernando, W. H. Haemers, D. Hardy and J. Hemmeter, Deza graphs: A generalization of strongly
regular graphs, J. Combin. Des., 7 (1999) 395–405.
[6] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B, 72 (1998) 236–250.
[7] W. Fish, J. D. Key and E. Mwambene, Ternary codes from some reflexive uniform subset graphs, Appl. Algebra
Engrg. Comm. Comput., 25 (2014) 363–382.
[8] R. W. Goldbach and H. L. Claasen, 3-class association schemes and Hadamard matrices of a certain block form,
Europ. J. Combin., 19 (1998) 943–951.
[9] S. Goryainov, W. H. Haemers, V. Kabanov and L. Shalaginov, Deza graphs with parameters (n, k, k − 1, a) and
β = 1, J. Combin. Des., 27 (2019) 188–202.
[10] S. Goryainov and D. Panasenko, On vertex connectivity of Deza graphs with parameters of the complements to
Seidel graphs, European J. Combin., 80 (2019) 143–150.
[11] W. H. Haemers, H. Kharaghani and M. A. Meulenberg, Divisible Design Graphs, J. Combin. Theory Ser. A, 118
(2011) 978–992.
[12] A. Hanaki and I. Miyamoto, Classification of association schemes of small order, Discrete Math., 264 (2003) 75–80.
[13] N. Ito, On spectra of doubly regular asymmetric digraphs of RH-type, Graphs Combin., 5 (1989) 229–234.
[14] Z. Janko and H. Kharaghani, A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs, J.
Combin. Theory Ser. A, 98 (2002) 118–126.
[15] E. M. Jawhari, M. Pouzet and I. Rival, A classification of reflexive graphs: the use of “holes”, Canad. J. Math., 38
(1986) 1299–1328.
[16] L. Jørgensen, On normally regular digraphs, Preprint R-94-2023, Institute for Electronic Systems, Aalborg University (1994), Revised version (1999).
[17] L. Jørgensen, G. Jones, M. Klin and S. Y. Song, Normally regular digraphs, association schemes and related
combinatorial structures, Sém. Lothar. Combin., 71 (2013/14) 39 pp.
[18] V. Kabanov, N. V. Maslova and L. V. Shalaginov, On strictly Deza graphs with parameters (n, k, k − 1, a), European J. Combin., 80 (2019) 194–202.
[19] H. Kharaghani, On the twin designs with the Ionin-type parameters, Electron. J. Combin., 7 (2000) 11 pp.
[20] H. Kharaghani, On the Siamese twin designs, Finite fields and applications (Augsburg, 1999), Springer, Berlin, 2001 303–312.
[21] H. Kharaghani, S. Sasani and S. Suda, A strongly regular decomposition of the complete graph and its association scheme, Finite Fields Appl., 48 (2017) 356–370.
[22] H. Kharaghani and S. Suda, Hoffman’s coclique bound for normal regular digraphs, and nonsymmetric association schemes, Mathematics Across Contemporary Sciences, Springer Proc. Math. Stat., 190, Springer, Cham, 2017 137–150.
[23] H. Kharaghani, S. Suda and B. Tayfeh-Razaie, Disjoint weighing matrices, J. Algebraic Combin., 55 (2022) 27–41.
[24] K. Wang and Y. Feng, Deza digraphs, European J. Combin., 27 (2006) 995–1004.
[25] K. Wang and F. Li, Deza digraphs II, European J. Combin., 29 (2008) 369–378.
[26] G. Zhang and K. Wang, A directed version of Deza graphs – Deza digraphs, Australas. J. Combin., 28 (2003)
239–244.