[1] M. A. Bhat and S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math., 189 (2015) 1–7.
[2] S. B. Bozkurt, A. D. Güngör and I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math.
Comput. Chem., 64 (2010) 32–334.
[3] S. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. çevik, Randić matrix and Randić energy, MATCH Commun. Math.
Comput. Chem., 64 (2010) 239–250.
[4] D. Cao, Bounds on eigenvalues and chromatic numbers, Linear Algebra Appl., 270 (1998) 1–13.
[5] M. Cavers, S. Falat and S. Kirkland, On the normalized Laplacian energy and general Randić R−1 index of graphs,
Linear Algebra Appl., 433 (2010) 172–190.
[6] K. C. Das, I. Gutman and B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl.
Math. Comput., 296 (2017) 116–123.
[7] K. C. Das, I. Gutman, I. Milovanović, E. Milovanović and B. Furtula, Degree based energies of graphs, Linear
Algebra Appl., 554 (2018) 185–204.
[8] E. Estrada, The ABC matrix, J. Math. Chem., 55 (2017) 1021–1033.
[9] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszentrum. Graz., 103 (1978) 1–22.
[10] I. Gutman, B. Furtula and (Eds.), Novel molecular structure descriptors- theory and applications, I-II, Univ. Kragu-
jevac, Kragujevac, 2010.
[11] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
[12] I. Gutman, B. Furtula and S. B. Bozkurt, On Randić energy, Linear Algebra Appl., 422 (2014) 50–57.
[13] S. Hafeez and R. Farooq, Inverse sum indeg energy of graphs, IEEE Access, 7 (2019) 100860 –100866.
[14] S. Hafeez, R. Farooq, On generalized inverse sum indeg index and energy of graphs, AIMS Math., 5 (2020) 2388–2411.
[15] Y. Hong, Bounds of eigenvalues of graphs, Discret. Math., 123 (1993) 65–74.
[16] R. A. Horn and C. R. Johnson, Matrix Analysis, New York, Cambridge Univ. Press 1990.
[17] M. Khan, K. Khan and S. I. Ahmad, On Extremal p-Energy of Bicyclic Digraphs, Polycycl. Aromat. Compd., 42
(2021) 7100-7113.
[18] I. Milovanović, E. Milovanović and I. Gutman, Upper bounds for some graph energies, Appl. Math. Comput., 289
(2016) 435–443.
[19] L. Mirsky, The spread of a matrix, Mathematika., 3 (1956) 127–130.
[20] D. A. Morales, Bounds for the total π-electron energy, Int. J. Quantum Chem., 88 (2002) 317–330.
[21] K. N. Prakasha, P. S. K. Reddy and I. N. Cangul, Symmetric division deg energy of a graph, Turk. J. Anal. Number
Theory., 5 (2017) 202–209.
[22] N. J. Rad, A. Jahanbani and I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun.
Math. Comput. Chem., 79 (2018) 371–386.
[23] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog and I. Gutman, Equienergetic
graphs, Kragujevac J. Math., 26 (2004) 5–13.
[24] D. S. Ravankar, M. M. Patil and S. P. Hande, Note on the bounds for the degree sum energy of a graph, degree sum energy of a common neighborhood graph and terminal distance energy of a graph, Int. J. Math. Arch., 7 (2016)
34–37.
[25] H. Ren and F. Zheng, Double hexagonal chains with maximal energy, Int. J. Quantum Chem., 107 (2007) 1437–1445.
[26] J. M. Rodriguez and J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277
(2016) 142–153.
[27] R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH, Weinheim, (2009).
[28] D. Vukičevic̀, Bond additive modelling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem.
Acta., 84 (2011), 87–91.
[29] D. Vukičevic̀, Bond additive modelling 5, Mathematical properties of the variable sum exdeg index, Croat. Chem.
Acta., 84 (2011) 93–101.
[30] Z. Yarahmadi and A. R. Ashrafi, The exdeg polynomial of some graph operations and applications in nanoscience, J. Comput. Theor. Nanosci., 12 (2015) 45–51.
[31] F. Zhang, Matrix Theory: Basic Results and Techniques, New York, Springer 1999.
[32] B. Zhou and N. Trinajstić, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs,
Acta Chim. Slov., 57 (2010) 518–523.
[33] Q. Zhu, Extremal k-uniform hypertrees on incidence energy, Int. J. Quantum Chem., 121 (2021).