تعداد نشریات | 43 |
تعداد شمارهها | 1,646 |
تعداد مقالات | 13,378 |
تعداد مشاهده مقاله | 30,105,684 |
تعداد دریافت فایل اصل مقاله | 12,059,533 |
On Neumann’s BFC-theorem and finite-by-nilpotent profinite groups | ||
International Journal of Group Theory | ||
مقاله 4، دوره 13، شماره 1، خرداد 2024، صفحه 47-54 اصل مقاله (441.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.134785.1802 | ||
نویسنده | ||
Wállef da Silva* | ||
Department of Mathematics, University of Brasilia, Brasilia-DF, Brazil | ||
چکیده | ||
Let $\gamma_{n}=[x_{1},\ldots,x_{n}]$ be the $n$th lower central word and $X_{n}(G)$ the set of $\gamma_{n}$-values in a group $G$. Suppose that $G$ is a profinite group where, for each $g\in G$, there exists a positive integer $n=n(g)$ such that the set $g^{X_{n}(G)}=\{g^{y}\,|\,y\in X_{n}(G)\}$ contains less than $2^{\aleph_{0}}$ elements. We prove that $G$ is a finite-by-nilpotent group. | ||
کلیدواژهها | ||
Conjucagy classes؛ verbal subgroups؛ profinite groups؛ FC-groups | ||
مراجع | ||
[1] E. Detomi, G. Donadze, M. Morigi and P. Shumyatsky, On finite-by-nilpotent groups, Glasgow Mathematical Jour- nal, 63 (2021) 54–58. [2] E. Detomi, B. Klopsch, P. Shumyatsky, Strong conciseness in profinite groups, Journal of the London Math. Society, 102 (2020), 977-993. [3] E. Detomi and M. Morigi, On finite-by-nilpotent profinite groups, Int. J. Group Theory, 9 no. 4 (2020) 223–229.
[4] E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, Q. J. Math., 70 (2019) 849–858. [5] E. Detomi, M. Morigi and P. Shumyatsky, On conciseness of words in profinite groups, J. Pure Appl. Algebra, 220 (2016) 3010–3015. [6] E. Detomi, M. Morigi and P. Shumyatsky, On profinite groups with commutators covered by countably many cosets, J. Algebra, 508 (2018) 431–444. [7] E. Detomi, M. Morigi and P. Shumyatsky, On profinite groups with word values covered by nilpotent subgroups, Isr. J. Math., 226 (2018) 993–1008. [8] E. Detomi, M. Morigi and P. Shumyatsky, Profinite groups with restricted centralizers of commutators, Proc. R. Soc. Edinb., Sect. A, Math., 150 (2020) 2301–2321. [9] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Q. J. Math., 69 (2018) 1047–1051. [10] S. Franciosi, F. De Giovani and P. Shumyatsky, On groups with finite verbal conjugacy classes, Houston J. Math., 28 (2002) 683–689. [11] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, Adv. Math., 226 (2011) 298–308. [12] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954) 236–248. [13] P. M. Neumann and M. R. Vaughan-Lee, An essay on BFC groups, Proc. Lond. Math. Soc., III. Ser., 35 (1977) 213–237. [14] L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Berlin: Springer, (2010). [15] D. Segal and A. Shalev, On groups with bounded conjugacy classes, Q. J. Math., Oxf. II. Ser., 50 (1999) 505–516.
[16] A. Shalev, Profinite groups with restricted centralizers, Proc. Amer. Math. Soc.,122 (1994) 1279–1284.
[17] P. Shumyatsky and W. da Silva, Engel conditions for soluble and pronilpotent groups, Advances in Group Theory and Applications, accepted for publication, (2022). [18] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. R. Soc. Lond., Ser. A, 238 (1957) 389–401. | ||
آمار تعداد مشاهده مقاله: 147 تعداد دریافت فایل اصل مقاله: 131 |