تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,327 |
تعداد مشاهده مقاله | 29,884,842 |
تعداد دریافت فایل اصل مقاله | 11,949,579 |
On graphs with anti-reciprocal eigenvalue property | ||
Transactions on Combinatorics | ||
دوره 13، شماره 1، خرداد 2024، صفحه 17-30 اصل مقاله (514.62 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2022.135210.2015 | ||
نویسندگان | ||
Sadia Akhter؛ Uzma Ahmad* ؛ Saira Hameed | ||
Department of Mathematics, University of the Punjab, P.O.Box 54590, Lahore, Pakistan | ||
چکیده | ||
Let $\mathtt{A}(\mathtt{G})$ be the adjacency matrix of a simple connected undirected graph $\mathtt{G}$. A graph $\mathtt{G}$ of order $n$ is said to be non-singular (respectively singular) if $\mathtt{A}(\mathtt{G})$ is non-singular (respectively singular). The spectrum of a graph $\mathtt{G}$ is the set of all its eigenvalues denoted by $spec(\mathtt{G})$. The anti-reciprocal (respectively reciprocal) eigenvalue property for a graph $\mathtt{G}$ can be defined as `` Let $\mathtt{G}$ be a non-singular graph $\mathtt{G}$ if the negative reciprocal (respectively positive reciprocal) of each eigenvalue is likewise an eigenvalue of $\mathtt{G}$, then $\mathtt{G}$ has anti-reciprocal (respectively reciprocal) eigenvalue property ." Furthermore, a graph $\mathtt{G}$ is said to have strong anti-reciprocal eigenvalue property (resp. strong reciprocal eigenvalue property) if the eigenvalues and their negative (resp. positive) reciprocals are of same multiplicities. In this article, graphs satisfying anti-reciprocal eigenvalue (or property $(-\mathtt{R})$) and strong anti-reciprocal eigenvalue property (or property $(-\mathtt{SR})$) are discussed. | ||
کلیدواژهها | ||
Anti-reciprocal eigenvalue property؛ strong anti-reciprocal eigenvalue property؛ adjacency matrix؛ graph spectrum | ||
مراجع | ||
1] U. Ahmad, S. Hameed and S. Jabeen, Class of weighted graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 68 (2020) 1129–1139. [2] U. Ahmad, S. Hameed and S. Jabeen, Noncorona graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 69 (2021) 1878–1888. [3] A. Alhevaz, M. Baghipur and S. Paul, Spectrum of graphs obtained by operations, Asian-Eur. J. Math., 13 8 p. [4] S. Banerjee and A. Adhikari, On spectra and spectral radius of Signless Laplacian of power graphs of some finite groups, Asian-Eur. J. Math., 14 (2021) 21 p. [5] S. Barik, S. Ghosh and D. Mondal, On graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra ,(2021) 1–14. [6] S. Barik, M. Nath, S. Pati and B. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, Electron. J. Linear Algebra., 17 (2008) 139–153. [7] S. Barik, M. Neumann and S. Pati, On nonsingular trees and a reciprocal eigenvalue property, Linear Multilinear Algebra, 54 (2006) 453–465. [8] S. Barik and S. Pati, Classes of nonbipartite graphs with reciprocal eigenvalue property Linear Algebra Appl., 612 (2021) 177–187. [9] S. Barik, S. Pati and BK. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., 21 (2007) 47–56. [10] D. M. Cvetković, I. Gutman and S. K. Simić, On self pseudo-inverse graphs, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz., 602/633 (1978) 111–117. [11] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math., 4 322–325 (1970); translation from Scientia (Valparaiso) No. 139 (1970) 42–49. [12] C. D. Godsil and B. D. Mckay, A new graph product and its spectrum, Bull. Aust. Math. Soc., 18 (1978) 21–28. [13] S. Hameed and U. Ahmad, Inverse of the adjacency matrices and strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 70 (2022) 2739–2764. [14] J. D. Lagrange, Boolean rings and reciprocal eigenvalue properties, Linear Algebra Appl., 436 (2012) 1863–1871. [15] S. Panda and S. Pati, Graphs with reciprocal eigenvalue properties, Electron. J. Linear Algebra., 31 (2016) 511–514. [16] R. Pavithra and R. Rajkumar, Spectra of M -bicone product of graphs, Asian-Eur. J. Math., 2022.
[17] S. Paul, Distance Laplacian spectra of joined union of graphs, Asian-Eur. J. Math., 15 (2022) 8 p.
[18] S. K. Vaidya and K. M. Popat, Energy of m-splitting and m-shadow graphs, Far East Journal of Mathe- matical Sciences, 102 (2017) 1571–1578. | ||
آمار تعداد مشاهده مقاله: 240 تعداد دریافت فایل اصل مقاله: 205 |