تعداد نشریات | 43 |
تعداد شمارهها | 1,652 |
تعداد مقالات | 13,415 |
تعداد مشاهده مقاله | 30,699,873 |
تعداد دریافت فایل اصل مقاله | 12,121,276 |
Ramification structures for quotients of multi-EGS groups | ||
International Journal of Group Theory | ||
مقاله 3، دوره 12، شماره 4، اسفند 2023، صفحه 237-252 اصل مقاله (454.56 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.130522.1741 | ||
نویسندگان | ||
Elena Di Domenico* 1؛ Şükran Gül2؛ Anitha Thillaisundaram3 | ||
1Department of Mathematics, University of Trento, 38123, Trento, Italy - University of the Basque Country UPV/EHU, 48080, Bilbao, Spain | ||
2Department of Mathematics, TED University, 06420, Ankara, Turkey | ||
3Centre for Mathematical Sciences, Lund University, 223 62, Lund, Sweden | ||
چکیده | ||
Groups associated to surfaces isogenous to a higher product of curves can be characterised by a purely group-theoretic condition, which is the existence of a so-called ramification structure. Gül and Uria-Albizuri showed that quotients of the periodic Grigorchuk-Gupta-Sidki groups, GGS-groups for short, admit ramification structures. We extend their result by showing that quotients of generalisations of the GGS-groups, namely multi-EGS groups, also admit ramification structures. | ||
کلیدواژهها | ||
Groups acting on rooted trees؛ finite p-groups؛ ramification structures | ||
مراجع | ||
[1] T. Alexoudas, B. Klopsch and A. Thillaisundaram, Maximal subgroups of multi-edge spinal groups, Groups Geom. Dyn., 10 (2016) 619–648. [2] N. Barker, N. Boston and B. Fairbairn, A note on Beauville p-groups, Exp. Math., 21 (2012) 298–306.
[3] F. Catanese, Fibered surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math., 122 (2000) 1–44. [4] E. Di Domenico, Ş. Gül and A. Thillaisundaram, Beauville structures for quotients of generalised GGS-groups, in preparation. [5] B. Fairbairn, Recent work on Beauville surfaces, structures and groups, Groups St Andrews 2013, London Math. Soc. Lecture Note Ser., 422, Cambridge University Press, Cambridge, 2015. [6] B. Fairbairn, Beauville p-groups: a survey, Groups St Andrews 2017, London Math. Soc. Lecture Note Ser., 455, Cambridge University Press, Cambridge, 2019. [7] G. A. Fernández-Alcober, A. Garrido and J. Uria-Albizuri, On the congruence subgroup property for GGS-groups, Proc. Amer. Math. Soc., 145 (2017) 3311–3322. [8] G. A. Fernández-Alcober, Ş. Gül and A. Thillaisundaram, Hausdorff dimension of branch path groups, in preparation.
[9] G. A. Fernández-Alcober and A. Zugadi-Reizabal, GGS-groups: Order of congruence quotients and Hausdorff di- mension, Trans. Amer. Math. Soc., 366 (2014) 1993–2017. [10] S. Garion and M. Penegini, New Beauville surfaces and finite simple groups, Manuscripta Math., 142 (2013) 391–408.
[11] S. Garion and M. Penegini, Beauville surfaces, moduli spaces and finite groups, Comm. Algebra, 42 (2014) 2126– 2155. [12] A. Garrido and J. Uria-Albizuri, Multi-GGS-groups have the congruence subgroup property, Proc. Edin. Math. Soc., 62 (2019) 889–894. [13] R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984) 939–985. [14] R. I. Grigorchuk, Just infinite branch groups, New horizons in pro-p groups, Progr. Math., 184, Birkhäuser Boston, Boston, 2000 121–179. [15] Ş. Gül, On ramification structures for finite nilpotent groups, Hacet. J. Math. Stat., 48 (2019) 1642–1652.
[16] Ş. Gül, An infinite family of strongly real Beauville p-groups, Monatsh. Math., 185 (2018) 663–675.
[17] Ş. Gül and J. Uria-Albizuri, Grigorchuk-Gupta-Sidki groups as a source for Beauville surfaces, Groups Geom. Dyn., 14 (2020) 689–704. [18] G. Jones, Beauville surfaces and groups: a survey, Rigidity and Symmetry, Fields Institute Communications, 70, Springer, 2014. [19] B. Klopsch and A. Thillaisundaram, Maximal subgroups and irreducible representations of generalised multi-edge spinal groups, Proc. Edin. Math. Soc., 61 (2018) 673–703. [20] M. Noce and A. Thillaisundaram, Ramification structures for quotients of the Grigorchuk groups, J. Algebra Appl., to appear. [21] A. Thillaisundaram and J. Uria-Albizuri, The profinite completion of multi-EGS groups, J. Group Theory 24 (2021) 321–357. [22] T. Vovkivsky, Infinite torsion groups arising as generalizations of the second Grigorchuk group, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000 357–377. | ||
آمار تعداد مشاهده مقاله: 1,321 تعداد دریافت فایل اصل مقاله: 1,063 |