
تعداد نشریات | 43 |
تعداد شمارهها | 1,706 |
تعداد مقالات | 13,972 |
تعداد مشاهده مقاله | 33,529,589 |
تعداد دریافت فایل اصل مقاله | 13,281,763 |
Irredundant families of maximal subgroups of finite solvable groups | ||
International Journal of Group Theory | ||
مقاله 25، دوره 12، شماره 3، آذر 2023، صفحه 163-176 اصل مقاله (429.66 K) | ||
نوع مقاله: Ischia Group Theory 2020/2021 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.130778.1751 | ||
نویسنده | ||
Agnieszka Stocka* | ||
Faculty of Mathematics, University of Bialystok, Ciolkowskiego 1M, 15-245 Bialystok, Poland | ||
چکیده | ||
Let $\mathcal{M}$ be a family of maximal subgroups of a group $G.$ We say that $\mathcal{M}$ is irredundant if its intersection is not equal to the intersection of any proper subfamily of $\mathcal{M}$. The maximal dimension of $G$ is the maximal size of an irredundant family of maximal subgroups of $G$. In this paper we study a class of solvable groups, called $\mathcal{M}$-groups, in which the maximal dimension has properties analogous to that of the dimension of a vector space such as the span property, the extension property and the basis exchange property. | ||
کلیدواژهها | ||
Intersection of maximal subgroups and maximal dimension and finite solvable groups | ||
مراجع | ||
[1] K. Archer, H. B. Serrano, K. Cook, L. K. Lauderdale, Y. Perez and V. Villalobos, On the intersection numbers of finite groups, preprint, arXiv:1907.02898, 2019. [2] C. Bagiński and A. Stocka, Finite groups with L-free lattices of subgroups, Illinois J. Math., 52 no. 3 (2008) 887–900.
[3] T. C. Burness, M. Garonzi and A. Lucchini, On the minimal dimension of a finite simple group, J. Combin. Theory Ser. A, 171 (2020) 32 pp. [4] T. C. Burness, M. Garonzi and A. Lucchini, Finite groups, minimal bases and the intersection numbers, preprint, arXiv:2009.10137v1, 2020. [5] E. Detomi and A. Lucchini, Maximal subgroups of finite soluble groups in general position, Ann. Mat. Pura Appl. (4), 195 no. 4 (2016) 1177–1183. [6] K. Doerk and T. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter & Co., Berlin, 1992. [7] R. Fernando, On an inequality of dimension-like invariants for finite groups, preprint, arXiv:1502.00360, 2015.
[8] M. Garonzi and A. Lucchini, Maximal irredundant families of minimal size in the alternating group, Arch. Math. (Basel), 113 (2019) 119–126. [9] P. Grzeszczuk and E. R. Puczyowski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra, 31 (1984) 47–54. [10] J. Krempa and A. Sakowicz, On uniform dimension of finite groups, Colloq. Math., 89 (2001) 223–231.
[11] J. Krempa and B. Terlikowska-Oslowska, On uniform dimension of lattices, Contributions to general algebra, 9, Hölder-Pichler-Tempsky, Vienna, 1995 219-230. [12] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 8, Springer- Verlag, New York, 1996. [13] R. Schmidt, Subgroup lattices of groups, De Gruyter Expositions in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994. [14] M. Weidner, Independence and maximal subgroups, Illinois J. Math., 40 no. 1 (1996) 47–76.
[15] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math., 57 no. 3 (1935) 509–533.
[16] T. Liu and R. Keith Dennis, MaxDim of some simple groups, preprint, arXiv:1712.04553, 2017.
[17] W. Niu, On Behaviors of Maximal Dimension, preprint, arXiv:1801.08327, 2018. | ||
آمار تعداد مشاهده مقاله: 679 تعداد دریافت فایل اصل مقاله: 340 |