
تعداد نشریات | 43 |
تعداد شمارهها | 1,714 |
تعداد مقالات | 14,051 |
تعداد مشاهده مقاله | 33,996,722 |
تعداد دریافت فایل اصل مقاله | 13,614,656 |
Bounding the domination number of a tree in terms of its annihilation number | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 2، شماره 1، خرداد 2013، صفحه 9-16 اصل مقاله (443.85 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2013.2652 | ||
نویسندگان | ||
Nasrin Dehgardai1؛ Sepideh Norouzian1؛ Seyed Mahmoud Sheikholeslami* 2 | ||
1Azarbaijan Shahid Madani University | ||
2Azarbaijan University of Tarbiat Moallem | ||
چکیده | ||
A set $S$ of vertices in a graph $G$ is a dominating set if every vertex of $V-S$ is adjacent to some vertex in $S$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in $G$. The annihilation number $a(G)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $G$ is at most the number of edges in $G$. In this paper, we show that for any tree $T$ of order $n\ge 2$, $\gamma(T)\le \frac{3a(T)+2}{4}$, and we characterize the trees achieving this bound. | ||
کلیدواژهها | ||
annihilation number؛ dominating set؛ Domination Number | ||
مراجع | ||
H. Aram, A. Bahremandpour, A. Khodkar, S. M. Sheikholeslami and
L. Volkmann Relating the annihilation number and the Roman
domination number of a tree submitted
Y. Caro and R. Pepper (2012) Degree Sequence Index Strategy arXiv:1210.1805v1
E. J. Cockayne, C. W. Ko and F. B. Shepherd (1985) Inequalities concerning dominating sets in
graphs Technical Report DM-370-IR, Dept. Math. Univ. Victoria
E. DeLaVina, C. E. Larson, R. Pepper and B. Waller (2010) Graffiti.pc on the 2-domination number of a graph Congr. Numer. 203, 15-32
E. DeLaVina, R. Pepper and B. Waller (2007) Independence, radius,
and Hamiltonian paths MATCH Commun. Math. Comput. Chem. 58, 481-510
W. J. Desormeaux, T. W. Haynes and M. A. Henning (2013) Relating the annihilation number and the total domination number
of a tree Discrete Appl. Math. 161, 349-354
T. W. Haynes, S. T. Hedetniemi and P. J. Slater (1998) Fundamentals of Domination in Graphs Marcel Dekker, Inc.,
New York
T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (1998) Domination in Graphs: Advanced Topics Marcel Dekker, Inc.,
New York
L. Jennings (2008) New Sufficient Condition for Hamiltonian Paths Ph.D. Dissertation, Rice University
C. E. Larson and R. Pepper (2011) Graphs with equal independence
and annihilation numbers The Electron. J. Combin., $\#$P180 18
O. Ore (1962) Theory of Graphs Amer. Math. Soc. Colloq. Publ., (Amer. Math. Soc., Providence, RI) 38
R. Pepper (2004) Binding Independence Ph.D. Dissertation,
University of Houston
R. Pepper (2009) On the annihilation number of a graph Recent Advances In Electrical
Engineering: Proceedings of the 15th American Conference on
Applied Mathematics , 217-220
B. Reed (1996) Paths, stars and the number three Combin. Probab. Comput. 5, 277-295
D. B. West (1996) Introduction to Graph Theory Prentice Hall, Inc., Upper Saddle River, NJ
| ||
آمار تعداد مشاهده مقاله: 7,611 تعداد دریافت فایل اصل مقاله: 4,133 |