تعداد نشریات | 43 |
تعداد شمارهها | 1,652 |
تعداد مقالات | 13,415 |
تعداد مشاهده مقاله | 30,667,108 |
تعداد دریافت فایل اصل مقاله | 12,121,222 |
Unicyclic graphs with non-isolated resolving number $2$ | ||
Transactions on Combinatorics | ||
مقاله 19، دوره 12، شماره 2، شهریور 2023، صفحه 73-78 اصل مقاله (397.52 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2022.129790.1880 | ||
نویسنده | ||
Mohsen Jannesari* | ||
Department of Science, Shahreza Campus, University of Isfahan, 86149-56841, Shahreza, Iran | ||
چکیده | ||
Let $G$ be a connected graph and $W=\{w_1, w_2,\ldots,w_k\}$ be an ordered subset of vertices of $G$. For any vertex $v$ of $G$, the ordered $k$-vector $$r(v|W)=(d(v,w_1), d(v,w_2),\ldots,d(v,w_k))$$ is called the metric representation of $v$ with respect to $W$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. A set $W$ is called a resolving set for $G$ if distinct vertices of $G$ have distinct metric representations with respect to $W$. The minimum cardinality of a resolving set for $G$ is its metric dimension denoted by $\dim(G)$. A resolving set $W$ is called a non-isolated resolving set for $G$ if the induced subgraph $\langle W\rangle$ of $G$ has no isolated vertices. The minimum cardinality of a non-isolated resolving set for $G$ is called the non-isolated resolving number of $G$ and denoted by $nr(G)$. The aim of this paper is to find properties of unicyclic graphs that have non-isolated resolving number $2$ and then to characterize all these graphs. | ||
کلیدواژهها | ||
non-isolated resolving sets؛ unicyclic graphs؛ metric dimension | ||
مراجع | ||
[1] S. Avadayappan, M. Bhuvaneshwari and P. Jeya Bala Chitra, More results on Non-isolated resolving number of a graph, International Journal of Applied and Advanced Scientific Research, Special issue, (2017) 49–53. [2] S. Avadayappan, M. Bhuvaneshwari and P. Jeya Bala Chitra, Non-isolated resolving number of a graph, Global Journal of Pure and Applied Mathematics, 13 (5) (2017) 336–346. [3] S. Avadayappan, M. Bhuvaneshwari and P. Jeya Bala Chitra, Non-isolated resolving number for some splitting graphs, International Journal of Mathematical Combinatorics, Special Issue, 1 (2018) 9–18. [4] R. F. Bailey and P. J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc., 43 (2011) 209–242. [5] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak and L. S. Ram, Network dicovery and verification, IEEE Journal On Selected Areas in Communications, 24 (2006) 2168–2181. [6] P. S. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hungar., 46 (2003) 9–15. [7] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21 (2007) 423–441. [8] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113. [9] M. Dudenko and B. Oliynyk, On unicyclic graphs of metric dimension 2, Algebra Discrete Math., 23 (2017) 216–222.
[10] F. Harary and R. A Melter, On the metric dimension of a graph, Ars Combin., 2 (1976) 191–195.
[11] C. Hernando, M. Mora, I. M. Pelayo, C. Seara and D. R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin., 17 (2010) 28 pp. [12] P. Jeya Bala Chitra and S. Avadayappan, Resolving Sets without Isolated Vertices, Procedia Computer Science, 74 (2015) 38–42. [13] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996) 217–229.
[14] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision Graphics and Image Processing 25 (1984) 113-121. [15] A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004) 383–393. [16] P. J. Slater, Leaves of trees, Congressus Numerantium, 14 (1975) 549-559. | ||
آمار تعداد مشاهده مقاله: 173 تعداد دریافت فایل اصل مقاله: 186 |