تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,327 |
تعداد مشاهده مقاله | 29,885,282 |
تعداد دریافت فایل اصل مقاله | 11,949,697 |
Gelfand pairs associated with the action of graph automaton groups | ||
International Journal of Group Theory | ||
مقاله 16، دوره 12، شماره 2، شهریور 2023، صفحه 55-66 اصل مقاله (643.65 K) | ||
نوع مقاله: Ischia Group Theory 2020/2021 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.131733.1761 | ||
نویسندگان | ||
Matteo Cavaleri1؛ Daniele D’Angeli1؛ Alfredo Donno* 2 | ||
1Dipartimento di Ingegneria, Università degli Studi Niccolò Cusano, Via Don Carlo Gnocchi, 3, 00166, Roma, Italy | ||
2Università degli Studi Niccolò Cusano Dipartimento di Ingegneria Via Don Carlo Gnocchi, 3 00166 Roma, Italy | ||
چکیده | ||
Graph automaton groups constitute a special class of automaton groups constructed from a graph. In this paper, we show that the action of any graph automaton group on each level of the rooted regular tree gives rise to a Gelfand pair. In particular, we determine the irreducible submodules of the action of such a group on the space of functions defined on each level of the tree, and we exhibit the corresponding spherical functions. | ||
کلیدواژهها | ||
Graph automaton group؛ Gelfand pair؛ Rooted regular tree؛ $2$-points homogeneous action؛ Spherical function | ||
مراجع | ||
[1] L. Bartholdi and R. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J., 28 (2002) 47–90. [2] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003 25–118. [3] M. B. Bekka and P. de la Harpe, Irreducibility of unitary group representations and reproducing kernels Hilbert spaces. Appendix by the authors in collaboration with R. Grigorchuk, Expo. Math., 21 (2003) 115–149. [4] M. Cavaleri, D. D’Angeli, A. Donno and E. Rodaro, Graph automaton groups, Adv. Group Theory Appl., 11 (2021) 75–112. [5] M. Cavaleri, D. D’Angeli, A. Donno and E. Rodaro, On an uncountable family of graphs whose spectrum is a Cantor set, submitted. [6] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Trees, wreath products and finite Gelfand pairs, Adv. Math., 206 (2006) 503–537. [7] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Finite Gelfand pairs and their applications to probability and statistics, J. Math. Sci. (N.Y.), 141 (2007) 1182–1229. [8] T. Ceccherini-Silberstein, F. Scarabotti nd F. Tolli, Harmonic analysis on finite groups. Representation theory, Gelfand pairs and Markov chains, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008. [9] D. D’Angeli and A. Donno, Self-similar groups and finite Gelfand pairs, Algebra Discrete Math., (2007) no. 2 54–69.
[10] D. D’Angeli and A. Donno, A group of automorphisms of the rooted dyadic tree and associated Gelfand pairs, Rend. Semin. Mat. Univ. Padova, 121 (2009) 73–92. [11] D. D’Angeli and A. Donno, Gelfand pairs associated with the action of G, appendix to the paper “On a family of Schreier graphs of intermediate growth associated with a self-similar group”, European J. Combin., 33 (2012) 1422–1426. [12] P. Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes- Monograph Series, 11, Institute of Mathematical Statistics, Hayward, CA, 1988. [13] R. Grigorchuk, On Burnside’s problem on periodic groups, (Russian) Funktsional. Anal. i Prilozhen., 14 (1980) 53–54. [14] R. Grigorchuk, Solved and unsolved problems around one group, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005 117–218. [15] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005, xii + 231 pp. | ||
آمار تعداد مشاهده مقاله: 670 تعداد دریافت فایل اصل مقاله: 182 |