تعداد نشریات | 43 |
تعداد شمارهها | 1,646 |
تعداد مقالات | 13,378 |
تعداد مشاهده مقاله | 30,105,269 |
تعداد دریافت فایل اصل مقاله | 12,059,505 |
Solvable groups whose monomial, monolithic characters have prime power codegrees | ||
International Journal of Group Theory | ||
مقاله 1، دوره 12، شماره 4، اسفند 2023، صفحه 223-226 اصل مقاله (351.08 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.131101.1755 | ||
نویسندگان | ||
Xiaoyou Chen* 1؛ Mark L. Lewis2 | ||
1School of Sciences, Henan University of Technology, P.O.Box 450001, Zhengzhou, China | ||
2Department of Mathematical Sciences, Kent State University, P.O.Box 44242, Kent, USA | ||
چکیده | ||
In this note, we prove that if $G$ is solvable and ${\rm cod}(\chi)$ is a $p$-power for every nonlinear, monomial, monolithic $\chi\in {\rm Irr}(G)$ or every nonlinear, monomial, monolithic $\chi \in {\rm IBr} (G)$, then $P$ is normal in $G$, where $p$ is a prime and $P$ is a Sylow $p$-subgroup of $G$. | ||
کلیدواژهها | ||
monomial Characters؛ monolithic characters؛ character codegrees | ||
مراجع | ||
[1] X. Chen and M. L. Lewis, Itô’s theorem and monomial Brauer characters, Bull. Aust. Math. Soc., 96 (2017) 426–428.
[2] X. Chen and M. L. Lewis, Squares of degrees of Brauer characters and monomial Brauer characters, Bull. Aust. Math. Soc., 100 (2019) 58–60. [3] X. Chen and M. L. Lewis, Monolithic Brauer characters, Bull. Aust. Math. Soc., 100 (2019) 434–439.
[4] X. Chen and M. L. Lewis, Degrees of Brauer characters and normal Sylow subgroups, Bull. Aust. Math. Soc., 102 (2020) 237–239. [5] X. Chen and Y. Yang, Normal p-complements and monomial characters, Monat. Math., 193 (2020) 807–810.
[6] D. Chillag, A. Mann and O. Manz, The co-degrees of irreducible characters, Israel J. Math., 73 (1991) 207–223.
[7] P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J., 21 (1962) 223–230.
[8] I. M. Isaacs, Large orbits in actions of nilpotent groups, Proc. Amer. Math. Soc., 127 (1999) 45–50.
[9] I. M. Isaacs, Element orders and character codegrees, Arch. Math., 97 (2011) 499–501.
[10] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[11] J. Lu, On a theorem of Gagola and Lewis, J. Algebra Appl., 16 (2017) 3 pp.
[12] J. Lu, X. Qin and X. Liu, Generalizing a theorem of Gagola and Lewis characterizing nilpotent groups, Arch. Math., 108 (2017) 337–339. [13] G. Navarro, Characters and Blocks of Finite Groups, Cambridge University Press, Cambridge, 1998.
[14] L. Pang and J. Lu, Finite groups and degrees of irreducible monomial characters, J. Algebra Appl., 15 (2016) 4 pp.
[15] L. Pang and J. Lu, Finite groups and degrees of irreducible monomial characters II. J. Algebra Appl., 16 (2017) 5 pp. [16] G. Qian, Y. Wang and H. Wei, Co-degrees of irreducible characters in finite groups, J. Algebra, 312 (2007) 946–955.
[17] G. Qian, A note on element orders and character codegrees, Arch. Math., 97 (2011) 99–103. | ||
آمار تعداد مشاهده مقاله: 1,737 تعداد دریافت فایل اصل مقاله: 1,238 |