[1] M. Lashkarizadeh Bami. Bochner’s theorem and the Hausdorff moment theorem on foundation topological semigroups. Canad. J. Math., 37(5):785–809, 1985.
[2] M. Lashkarizadeh Bami. Representations of foundation semigroups and their algebras. Canad. J. Math., 37(1):29–47, 1985.
[3] J. W. Baker and M. Lashkarizadeh-Bami. On the representations of certain idempotent topological semigroups. Semigroup Forum, 44(2):245–254, 1992.
[4] M. Lashkarizadeh-Bami. The L∞ -representation algebra of a foundation topological semigroup. Manuscripta Math., 77(2-3):161–167, 1992.
[5] M. Lashkarizadeh-Bami. On various types of convergence of positive definite functions on foundation semigroups. Math. Proc. Cambridge Philos. Soc., 111(2):325–330, 1992.
[6] J. W. Baker and M. Lashkarizadeh-Bami. The L∞ -representation algebra of an idempotent topological semigroup. Semigroup Forum, 46(1):32–36, 1993.
[7] M. Lashkarizadeh-Bami. Functional equations and ∗ -representations on topological semigroups. Manuscripta Math., 82(3-4):261–276, 1994.
[8] J. W. Baker and M. Lashkarizadeh-Bami. Representations and positive definite functions on topological semigroups. Glasgow Math. J., 38(1):99–111, 1996.
[9] M. Lashkarizadeh Bami. On the multipliers of the pair (Ma (S), L∞ (S; Ma (S))) of a foundation semigroup S. Math. Nachr., 181:73–80, 1996.
[10] M. Lashkarizadeh Bami. On the sup-norm closure of the L∞ -representation algebra R(S) of a foundation semigroup S. Semigroup Forum, 52(3):389–392, 1996.
[11] M. Lashkarizadeh Bami. Positive functionals on Lau Banach ∗-algebras with application to negative-definite functions on foundation semigroups. Semigroup Forum, 55(2):177–184, 1997.
[12] Mahmood Lashkarizadeh Bami. The existence of faithful continuous representations on certain topological semigroups. J. Sci. Univ. Tehran Int. Ed., 2(1):23–28, 1997.
[13] Mahmood Lashkarizadeh Bami. On some topologies which coincide on R+ (S) for a foundation topological semigroup S. J. Sci. Univ. Tehran Int. Ed., 2(1):13–21, 1997.
[14] M. Lashkarizadeh Bami. Function algebras on weighted topological semigroups. Math. Japon., 47(2):217–227, 1998.
[15] M. Lashkarizadeh Bami. Ideals of M (S) as ideals of LU C(S)∗ of a compactly cancellative topological semigroup S. Math. Japon., 48(3):363–366, 1998.
[16] M. Lashkarizadeh-Bami. On a conjecture on the uniform convergence of a sequence of weighted bounded positive definite functions on foundation semigroups. Taiwanese J. Math., 2(1):87–95, 1998.
[17] M. Lashkarizadeh Bami. A proof of Bochner-Weil’s theorem from its discrete form on weighted foundation semigroups. Bull. Iranian Math. Soc., 25(2):49–58, 1999.
[18] M. Lashkarizadeh Bami. The duality of the L∞ -representation algebra R(S) of a foundation semigroup S and function algebras. J. Sci. Islam. Repub. Iran, 11(2):127–129, 2000.
[19] M. Lashkarizadeh Bami. Generalized positive definite functions and completely monotone functions on foundation semigroups. J. Sci. Islam. Repub. Iran, 11(3):245–252, 2000.
[20] M. Lashkarizadeh Bami. The topological centers of LU C(S)∗ and Ma (S)∗∗ of certain foundation semigroups. Glasg. Math. J., 42(3):335–343, 2000.
[21] M. Lashkarizadeh Bami. Amenability of certain Banach algebras with application to measure algebras on foundation semi-groups. Bull. Belg. Math. Soc. Simon Stevin, 9(3):399–404, 2002.
[22] M. Lashkarizadeh Bami. A generalization of Bochner-Weil’s theorem and Stone’s theorem on foundation semigroups. Arch. Math. (Basel), 83(2):146–153, 2004.
[23] M. Lashkarizadeh Bami. Isometric isomorphisms between Banach algebras related to a certain class of Cliffod topological semigroups. Semigroup Forum, 69(2):219–229, 2004.
[24] M. Lashkarizadeh Bami. The coincidence of some topologies on the unit ball of the Fourier-Stieltjes algebra of weighted foundation semigroups. Bull. Belg. Math. Soc. Simon Stevin, 12(4):535–542, 2005.
[25] M. Lashkarizadeh Bami. Isometric isomorphisms between locally compact hypergroups and their related algebras. Sci. Math. Jpn., 61(1):75–81, 2005.
[26] M. Lashkarizadeh Bami and H. Samea. Approximate amenability of certain semigroup algebras. Semigroup Forum, 71(2):312–322, 2005.
[27] H. Amiri and M. Lashkarizadeh Bami. Principal groupoids with continuous weak multiplication. Bull. Austral. Math. Soc., 74(1):15–28, 2006.
[28] M. Lashkarizadeh Bami. Decomposition of H ∗ -algebra valued negative definite functions on topological ∗ -semigroups. J. Sci. Islam. Repub. Iran, 17(2):165–173, 2006.
[29] H. Amiri and M. Lashkarizadeh Bami. Square integrable representation of groupoids. Acta Math. Sin. (Engl. Ser.), 23(2):327–340, 2007.
[30] M. Lashkarizadeh Bami, B. Mohammadzadeh, and R. Nasr-Isfahani. Inner invariant extensions of Dirac measures on compactly cancellative topological semigroups. Bull. Belg. Math. Soc. Simon Stevin, 14(4):699–708, 2007.
[31] M. Lashkarizadeh Bami, B. Mohammadzadeh, and H. Samea. Derivations on certain semigroup algebras. J. Sci. Islam. Repub. Iran, 18(4):339–345, 2007.
[32] Mahmoud Lashkarizadeh Bami and Hojatollah Samea. Amenability and essential amenability of certain Banach algebras. Studia Sci. Math. Hungar., 44(3):377–390, 2007.
[33] M. Lashkhrizadeh Bami and B. Mohammadzadeh. Inner amenability of locally compact groups and their algebras. Studia Sci. Math. Hungar., 44(2):265–274, 2007.
[34] M. Lashkarizadeh Bami and S. Naseri. The structure, approximate identities, and duals of lp -Munn algebras. Sci. Math. Jpn., 68(1):55–61, 2008.
[35] M. Lashkarizadeh Bami. Fourier transforms of bounded bilinear forms on C ∗ (S1 ) × C ∗ (S2 ) of foundation ∗-semigroups S1 and S2 . Acta Math. Sin. (Engl. Ser.), 24(3):439–454, 2008.
[36] M. Lashkarizadeh Bami. The semisimplicity of L1 (K, w) of a weighted commutative hypergroup K. Acta Math. Sin. (Engl. Ser.), 24(4):607–610, 2008.
[37] M. Lashkarizadeh Bami, M. Pourgholamhossein, and H. Samea. Left cancellative and left shiftable hypergroups. Indian J. Pure Appl. Math., 39(1):87–97, 2008.
[38] M. Lashkarizadeh Bami, M. Pourgholamhossein, and H. Samea. Fourier algebras on locally compact hypergroups. Math. Nachr., 282(1):16–25, 2009.
[39] M. Lashkarizadeh Bami and H. Samea. Amenability and essential amenability of certain convolution Banach algebras on compact hypergroups. Bull. Belg. Math. Soc. Simon Stevin, 16(1):145–152, 2009.
[40] Mahmoud Lashkarizadeh Bami and Hojatollah Samea. Approximate and essential left amenability of Lau algebras with appli-cation to semigroup algebras. Studia Sci. Math. Hungar., 46(1):1–24, 2009.
[41] Zahra Ghorbani and Mahmood Lashkarizadeh Bami. ϕ-approximate biflat and ϕ-amenable Banach algebras. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 13(1):3–10, 2012.
[42] Zahra Ghorbani and Mahmood Lashkarizadeh Bami. ϕ-n-approximate weak amenability of abstract Segal algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 74(4):59–68, 2012.
[43] M. Lashkarizadeh Bami. The Banach algebra F (S, T ) and its amenability of commutative foundation ∗-semigroups S and T. Taiwanese J. Math., 16(2):787–802, 2012.
[44] Z. Ghorbani and M. Lashkarizadeh Bami. ϕ-amenable and ϕ-biflat Banach algebras. Bull. Iranian Math. Soc., 39(3):507–515, 2013.
[45] Zeinab Kamali and Mahmood Lashkarizadeh Bami. Bochner-Schoenberg-Eberlein property for abstract Segal algebras. Proc. Japan Acad. Ser. A Math. Sci., 89(9):107–110, 2013.
[46] Zeinab Kamali and Mahmood Lashkarizadeh Bami. The multiplier algebra and BSE property of the direct sum of Banach algebras. Bull. Aust. Math. Soc., 88(2):250–258, 2013.
[47] M. Lashkarizadeh Bami, M. Valaei, and M. Amini. Super module amenability of inverse semigroup algebras. Semigroup Forum, 86(2):279–288, 2013.
[48] M. L. Bami, M. Valaei, and M. Amini. Module amenability and weak module amenability of Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76(4):35–44, 2014.
[49] Mahmood Lashkarizadeh Bami, Mohammad Valaei, and Massoud Amini. The structure of ϕ-module amenable Banach algebras. Abstr. Appl. Anal., pages Art. ID 176736, 7, 2014.
[50] Nawab Hussain, Mahmood Lashkarizadeh Bami, and Ebrahim Soori. An implicit method for finding a common fixed point of a representation of nonexpansive mappings in Banach spaces. Fixed Point Theory Appl., pages 2014:238, 7, 2014.
[51] Zeinab Kamali and Mahmood Lashkarizadeh Bami. The Bochner-Schoenberg-Eberlein property for L1 (R+ ). J. Fourier Anal. Appl., 20(2):225–233, 2014.
[52] M. Lashkarizadeh Bami and E. Soori. Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings. Bull. Iranian Math. Soc., 40(4):977–1001, 2014.
[53] Nawab Hussain, Mahmood Lashkarizadeh Bami, and Ebrahim Soori. Erratum to: An implicit method for finding a common fixed point of a representation of nonexpansive mappings in Banach spaces [ MR3360584]. Fixed Point Theory Appl., pages 2015:203, 1, 2015.
[54] A. Bodaghi, H. Ebrahimi, M. Lashkarizadeh Bami, and M. Nemati. Module mean for Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 78(2):21–30, 2016.
[55] Zeinab Kamali and Mahmood Lashkarizadeh Bami. The Bochner-Schoenberg-Eberlein property for totally ordered semigroup algebras. J. Fourier Anal. Appl., 22(6):1225–1234, 2016.
[56] Abasalt Bodaghi, Hamzeh Ebrahimi, and Mahmood Lashkarizadeh Bami. Generalized notions of module character amenability. Filomat, 31(6):1639–1654, 2017.
[57] M. Lashkarezadeh Bami and H. Sadeghi. A generalization of amenability for topological semigroups and semigroup algebras. Hacet. J. Math. Stat., 46(4):567–577, 2017.
[58] H. Sadeghi and M. Lashkarizadeh Bami. Module character inner amenability of Banach algebras. Math. Sci. (Springer), 11(3):173–179, 2017.
[59] Mahmood Lashkarizadeh Bami and Hamid Sadeghi. Module (ϕ, φ)-biprojectivity and module (ϕ, φ)-biflatness of Banach algebras. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19(4):521–528, 2018.
[60] H. Sadeghi and M. Lashkarizadeh Bami. Module amenability, module character biprojectivity and module character biflatness of Lau product of two Banach algebras. Filomat, 32(19):6627–6641, 2018.