[1] J. Avila, V. Marin and H. Pinedo, Isomorphism theorems for groupoids and some applications, Int. J. Math. Math.
Sci., (2020) 10 pp.
[2] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Math. Ann., 96 (1926) 360–366.
[3] R. Brown, Topology and Groupoids, Booksurge, N. Carolina, 2006.
[4] R. Brown , From groups to groupoids, Bull. Lond. Math. Soc., 19 (1987) 113–134.
[5] Ronald Brown’s webpage, available at http://groupoids.org.uk/gpds.htm.
[6] R. Brown and A. Razak Salleh, A van Kampen theorem for unions of non-connected spaces, Archiv. Math., 42
(1984) 85–88.
[7] H. Cartan, Sur la mesure de Haar, C. R. Acad. Sci. Paris, 211 (1940) 759–762.
[8] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990.
[9] J. Dixmier, Von Neumann Algebras, Part II, North-Holland Publishing Company, Amsterdam, 1981.
[10] C. Ehresmann, Oeuvres Complètes et Commentées, Edited by A. C. Ehresmann from 1980-83 as supplements to
the Cahiers de Topologie et Géométrie Différentielle Catégoriques.
[11] S. Eilenberg and S. Maclane, The general theory of natural equivalences, Trans. Amer. Math. Soc., 58 (1945)
231–294.
[12] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92 (1964) 181–236.
[13] G. B. Folland, A Course in Abstract Harmonic Analysis, 2nd ed., CRC Press, Boca Raton, FL, 2015
[14] R. H. Fox, Torus homotopy groups, Ann. of Math., 49 (1948) 471–510.
[15] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique III : preschemas
quotients, Séminaire Bourbaki, 6 (1960-61) 99–118.
[16] P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math. Soc., 242 (1978) 1–33.
[17] P. Hahn, The regular representations of measure groupoids, Trans. Amer. Math. Soc., 242 (1978) 35–72.
[18] P. J. Higgins, Categories and Groupoids, Van Nostrand Rienhold Mathematical Studies, No. 32. Van Nostrand
Reinhold Co., London, 1971.
[19] A. Ibort and A. Rodriguez-Miguel, An Introduction to Groups, Groupoids and Their Representations, CRC Press
LLC, Boca Rota, FL, 2019.
[20] Lievenlb,The15-puzzleGroupoid(1),availabeathttp://www.neverendingbooks.org/the-15-puzzle-groupoid-1, accessed (2007) 6–17.
[21] G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966) 187–207.
[22] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.
[23] P. S. Muhly, Coordinates in Operator Algebra, Amer. Math. Soc., Providence, RI, 1997
[24] P. S. Muhly and D. P. Williams, Continuous trace groupoid C ∗ -algebras, Math. Scand., 70 (1992) 127–145.
[25] J. Pradines, Théories de Lie pour les groupoides différentiables: relations entre propriétés locales et globales, C. R. Acad. Sci. Paris, Sér. A, 263 (1966) 907–910.
[26] A. L. T. Paterson, Groupoids, Inverse Semigroups, and their Operator Algebras, Progress in Mathematics, 170,
Birkhäuser, Boston, 1999.
[27] A. L. T. Paterson, Inverse semigroups, groupoids and a problem of J. Renault, in Algebraic Methods in Operator
Theory, R. E. Curto and P. E. T. Jorgensen, eds., Birkhäuser, Boston, (1994) 79–89.
[28] A. L. T. Paterson, The Fourier algebra for locally compact, Canad. J. Math., 56 (2004) 1259–1289.
[29] A. Ramsay, Topologies on measured groupoids, J. Funct. Anal. , 47 (1982) 314–343.
[30] R. Ramsay and M. E. Walter, Fourier-Stieltjes algebras of locally compact groupoids, J. Funct. Anal., 148 (1997)
165–314.
[31] J. Renault, A Groupoid Approach to C ∗ −algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980.
[32] J. Renault, The Fourier algebra of a measured groupoid and its multipliers, J. Funct. Anal., 145 (1997) 455–490.
[33] A. K. Seda, Topological groupoids, measures and representations, Ph. D. thesis, University of Wales, Cardiff, 1974.
[34] A. K. Seda, On the continuity of Haar measure on topological groupoids, Proc. Amer. Math. Soc., 96 (1986)
115–120.
[35] S. Segal, C ∗ -algebra and W ∗ -algebra, Springer, Berlin, 1971.
[36] A. Weil, L’intégration dans les Groupes Topologiques et ses Applications, Hermann, Paris, 1940.
[37] A. Weinstein, Groupoids: unifying internal and external symmetry. A tour through some examples, Notices Amer.
Math. Soc., 43 (1996) 744–752.
[38] J. J. Westman, Nontransitive groupoid algebras, University of California at Irvine, 1967.
[39] J. J. Westman, Harmonic analysis on groupoids, Pacific J. Math., 27 (1968) 621–632.
[40] Wikipedia, Groupoid, available at https://en.wikipedia.org/wiki/Groupoid.