تعداد نشریات | 43 |
تعداد شمارهها | 1,677 |
تعداد مقالات | 13,681 |
تعداد مشاهده مقاله | 31,753,600 |
تعداد دریافت فایل اصل مقاله | 12,551,199 |
Symmetric designs and projective special unitary groups $\text{PSU}_{5}(q)$ | ||
International Journal of Group Theory | ||
مقاله 3، دوره 11، شماره 3، آذر 2022، صفحه 175-185 اصل مقاله (453.67 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2021.123581.1630 | ||
نویسنده | ||
Ashraf Daneshkhah* | ||
Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran | ||
چکیده | ||
In this article, we prove that if a nontrivial symmetric $(v, k, \lambda)$ design admit a flag-transitive and point-primitive automorphism group $G$, then the socle $X$ of $G$ cannot be a projective special unitary group of dimension five. As a corollary, we list all exist nineteen non-isomorphism such designs in which $\lambda\in\{1,2,3,4,6,12, 16, 18\}$ and $X=\text{PSU}_n(q)$ with $(n,q)\in\{(2,7),(2,9),(2,11),(3,3),(4,2)\}$. | ||
کلیدواژهها | ||
Symmetric design؛ flag-transitive؛ point-primitive؛ automorphism group | ||
مراجع | ||
[1] S. H. Alavi and M. Bayat, Flag-transitive point-primitive symmetric designs and three dimensional projective special linear groups, Bull. Iranian Math. Soc., 42 (2016) 201–221. [2] S. H. Alavi, M. Bayat and A. Daneshkhah, Symmetric designs admitting flag-transitive and point-primitive auto- morphism groups associated to two dimensional projective special groups, Des. Codes Cryptogr., 79 (2016) 337–351. [3] S. H. Alavi, M. Bayat and A. Daneshkhah, Finite exceptional groups of Lie type and symmetric designs, (Submitted), 2020. [4] S. H. Alavi, M. Bayat, A. Daneshkhah and S. Zang Zarin , Symmetric designs and four dimensional projective special unitary groups, Discrete Math., 342 (2019) 1159–1169. [5] T. Beth, D. Jungnickel and H. Lenz, Design theory, I, Second edition, Encyclopedia of Mathematics and its Appli- cations, 69, Cambridge University Press, Cambridge, 1999. [6] S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive symmetric designs with up to 2500 points, J. Combin. Des., 19 (2011) 463–474. [7] John N. Bray, Derek F. Holt and Colva M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, With a foreword by Martin Liebeck. London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013. [8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of finite groups, Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. [9] A. Daneshkhah and S. Zang Zarin, Flag-transitive point-primitive symmetric designs and three dimensional projec- tive special unitary groups, Bull. Korean Math. Soc., 54 (2017) 2029–2041. [10] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Des. Codes Cryptogr., 22 (2001) 191–207.
[11] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996. [12] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[13] D. R. Hughes and F. C. Piper, Design theory, Second edition. Cambridge University Press, Cambridge, 1988.
[14] Martin W. Liebeck, J. Saxl and Gary M. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, Proc. London Math. Soc. (3), 55 (1987) 507–537. [15] E. O’Reilly-Regueiro, On primitivity and reduction for flag-transitive symmetric designs, J. Combin. Theory Ser. A, 109 (2005) 135–148. [16] E. O’Reilly-Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle, J. Algebraic Combin., 26 (2007) 529–552. [17] Cheryl E. Praeger, The flag-transitive symmetric designs with 45 points, blocks of size 12 and 3 blocks on every point pair, Des. Codes Cryptogr., 44 (2007) 115–132. [18] Cheryl E. Praeger and S. Zhou, Imprimitive flag-transitive symmetric designs, J. Combin. Theory Ser. A, 113 (2006) 1381–1395. [19] J. Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Combin. Theory Ser. A, 100 (2002) 322–348. [20] Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2), 97 (1973) 27–56.
[21] D. Tian and S. Zhou, Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100, J. Combin. Des., 21 (2013) 127–141. [22] S. Zhou, H. Dong and W. Fang, Finite classical groups and flag-transitive triplanes, Discrete Math., 309 (2009) 5183–5195. | ||
آمار تعداد مشاهده مقاله: 887 تعداد دریافت فایل اصل مقاله: 281 |