[1] |
O. Silakari and P. K. Singh. Hotspot and binding site prediction: Strategy to target protein–protein interactions. Concepts and Experimental Protocols of Modelling and Informatics in Drug Design, pages 267--284, 2021. [ bib | DOI ] |
[2] |
Y. Qiu, X. Li, X. He, J. Pu, J. Zhang, and S. Lu. Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). European Journal of Medicinal Chemistry, 207:112764, 2020. [ bib | DOI ] |
[3] |
G. Taherzadeh, Y. Zhou, A. W. Liew, and Y. Yang. Sequence-Based Prediction of Protein–Carbohydrate Binding Sites Using Support Vector Machines. Journal of chemical information and modeling, 10:2115--2122, 2016. [ bib | DOI ] |
[4] |
S. Shafiee, A. Fathi, and F. Abdali-Mohammadi. A Review of the Uses of Artificial Intelligence in Protein Research. In Fourth National Conference on Proteins and Peptide science, 2019. [ bib | DOI ] |
[5] |
S. Gattani, A. Mishra, and T. Hoque. Sequence and Structure based Protein Peptide Binding Residue Prediction. In The 6th Annual Conference on Computational Biology and Bioinformatics, Louisiana, USA., 2018. [ bib | DOI ] |
[6] |
N. Verma, X. Qu, F. Trozzi, M. Elsaied, N. Karki, Y. Tao, B. Zoltowski, E. C. Larson, and E. Kraka. SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. International journal of molecular sciences, 22(3), 2021. [ bib | DOI ] |
[7] |
J. Qiu, M. Bernhofer, M. Heinzinger, S. Kemper, T. Norambuena, F. Melo, and B. Rost. ProNA2020 predicts protein–DNA, protein–RNA, and protein–protein binding proteins and residues from sequence. Journal of Molecular Biology, 437(7):2428--2443, 2020. [ bib | DOI ] |
[8] |
I. Johansson-Åkhe, C. Mirabello, and B. Wallner. Predicting protein-peptide interaction sites using distant protein complexes as structural templates. Scientific reports, 9(1):1--13, 2019. [ bib | DOI ] |
[9] |
H. Guo, B. Liu, D. Cai, and T. Lu. Predicting protein–protein interaction sites using modified support vector machine. International Journal of Machine Learning and Cybernetics, 9(3):393–398, 2018. [ bib | DOI ] |
[10] |
G. Taherzadeh, Y. Zhou, A. W. Liew, and Y. Yang. Structure-based prediction of protein– peptide binding regions using Random Forest. Bioinformatics, 34(3):477–484, 2018. [ bib | DOI ] |
[11] |
L. G. Trabuco, S. Lise, E. Petsalaki, and R. B. Russell. PepSite: prediction of peptide-binding sites from protein surfaces. Nucleic acids research, 40(W1):W423–W427, 2012. [ bib | DOI ] |
[12] |
C. Yan and X. Zou. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. Journal of computational chemistry, 36(1):49--61, 2014. [ bib | DOI ] |
[13] |
A. Lavi, C. H. Ngan, D. Movshovitz-Attias, T. Bohnuud, C. Yueh, D. Beglov, O. Schueler-Furman, and D. Kozakov. Detection of peptide-binding sites on protein surfaces: The first step toward the modeling and targeting of peptide-mediated interactions. Proteins: Structure, Function, and Bioinformatics, 81(12):2096--2105, 2013. [ bib | DOI ] |
[14] |
J. Zhao, Y. Cao, and L. Zhang. Exploring the computational methods for protein-ligand binding site prediction. Computational and structural biotechnology journal, 18:417--426, 2020. [ bib | DOI ] |
[15] |
P. Chen, S. Hu, J. Zhang, X. Gao, J. Li, J. Xia, and B. Wang. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction. IEEE/ACM transactions on computational biology and bioinformatics, 13(5):901 -- 912, 2016. [ bib | DOI ] |
[16] |
J. Zhao, Y. Cao, and L. Zhang. Exploring the computational methods for protein-ligand binding site prediction. Computational and structural biotechnology journal, 18:417--426, 2020. [ bib | DOI ] |
[17] |
R. Krivák and D. Hoksza. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics, 10(1):1--12, 2018. [ bib | DOI ] |
[18] |
L. Jendele, R. Krivak, P. Skoda, M. Novotny, and D. Hoksza. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(w1):W345–W349, 2019. [ bib | DOI ] |
[19] |
J. Si, J. Cui, J. Cheng, and R. Wu. Computational Prediction of RNA-Binding Proteins and Binding Sites. International journal of molecular sciences, 16(11):26303--26317, 2015. [ bib | DOI ] |
[20] |
F. Guo, S. C Li, Y. Fan, and L. Wang. Identifying Protein-Protein Binding Sites with a Combined Energy Function. Current Protein and Peptide Science, 15(6):540--552, 2014. [ bib | DOI ] |
[21] |
S. Gattani, A. Mishra, and M. T. Hoque. StackCBPred: A stacking based prediction of protein-carbohydrate binding sites from sequence. Carbohydrate research, 486:107857, 2019. [ bib | DOI ] |
[22] |
H. Zhao, G. Taherzadeh, Y. Zhou, and Y. Yang. Computational Prediction of Carbohydrate-Binding Proteins and Binding Sites. Current protocols in protein science, 94(1), 2018. [ bib | DOI ] |
[23] |
X. Zhang and S. Liu. Computational Prediction of Carbohydrate-Binding Proteins and Binding Sites. Bioinformatics, 33(6):854–862, 2017. [ bib | DOI ] |
[24] |
S. Sukumar, X. Zhu, S. S. Ericksen, and J. C. Mitchell. DBSI server: DNA binding site identifier. Bioinformatics, 32(18):2853–2855, 2016. [ bib | DOI ] |
[25] |
G. Taherzadeh, Y. Zhou, A. W. Liew, and Y. Yang. Sequence-Based Prediction of Protein–Carbohydrate Binding Sites Using Support Vector Machines. Journal of chemical information and modeling, 56(10):2115–2122, 2016. [ bib | DOI ] |
[26] |
Z. Jiang, X. Hu, G. Geriletu, H. Xing, and X. Cao. Identification of Ca2+-binding residues of a protein from its primary sequence. Genetics and molecular research, 15(2), 2016. [ bib | DOI ] |
[27] |
S. Shafiee, A. Fathi, and F. A. Mohammadi. Prediction of protein – peptide binding residues using classification algorithms. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), pages 29--34. IEEE, 2020. [ bib | DOI ] |
[28] |
C. Xia, X. Pan, and H. Shen. Protein–ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data. Bioinformatics, 36(10):3018–3027, 2020. [ bib | DOI ] |
[29] |
J. Segura, P. F. Jones, and N. Fernandez-Fuentes. Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams. BMC bioinformatics, 12(1):1--9, 2011. [ bib | DOI ] |
[30] |
F. Guo, S. Li Cheng, Z. Wei, D. Zhu, C. Shen, and L. Wang. Structural neighboring property for identifying protein-protein binding sites. BMC systems biology, 9(5):1--9, 2015. [ bib | DOI ] |
[31] |
F. Guo and L. Wang. Computing the protein binding sites. In International Symposium on Bioinformatics Research and Applications, pages 25--36. Springer, 2011. [ bib | DOI ] |
[32] |
J. Jiménez, S. Doerr, G. Martínez-Rosell, A. S. Rose, and G. De Fabritiis. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19):3036–3042, 2017. [ bib | DOI ] |
[33] |
S. Reille, M. Garnier, X. Robert, P. Gouet, J. Martin, and G. Launay. Identification and visualization of protein binding regions with the ArDock server. Nucleic acids research, 46(W1):W417–W422, 2018. [ bib | DOI ] |
[34] |
M. Simonovsky and J. Meyers. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. Journal of chemical information and modeling, 60(4):2356–2366, 2020. [ bib | DOI ] |
[35] |
Y. Cui, Q. Dong, D. Hong, and X. Wang. Predicting protein-ligand binding residues with deep convolutional neural networks. BMC bioinformatics, 20(1):1--12, 2019. [ bib | DOI ] |
[36] |
R. Ramani, K. Krumholz, Y. Huang, and A. Siepel. PhastWeb: a web interface for evolutionary conservation scoring of multiple sequence alignments using phastCons and phyloP. BMC bioinformatics, 35(13):2320--2322, 2019. [ bib | DOI ] |
[37] |
C. Clemente, C. Leonetti, S. Ravetti, D. Ferreiro, R. Parra, and M. Freiberger. FrustraPocket: A method to predict protein–ligand binding sites based on frustration. In 6th International Electronic Conference on Medicinal Chemistry. MDPI, 2020. [ bib | DOI ] |
[38] |
Y. Cui, Q. Dong, D. Hong, and X. Wang. Predicting protein-ligand binding residues with deep convolutional neural networks. BMC bioinformatics, 20(1):1--12, 2019. [ bib | DOI ] |
[39] |
H. Abid, N. J. Jenny, and S. Shovan. Improved Identification Performance of Lysine Glycation PTM using PSI-BLAST. In 2020 IEEE Region 10 Symposium (TENSYMP), pages 18--21. IEEE, 2020. [ bib | DOI ] |
[40] |
Y. Yang, R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang, A. Sattar, and Y. Zhou. Improved Identification Performance of Lysine Glycation PTM using PSI-BLAST. In Methods in Molecular Biology, pages 55--63. Springer, 2017. [ bib | DOI ] |
[41] |
A. Sharma, A. Lysenko, Y. López, A. Dehzangi, R. Sharma, H. Reddy, A. Sattar, and T. Tsunoda. HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residues. BMC genomics, 19(9):1--7, 2019. [ bib | DOI ] |
[42] |
S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In International conference on machine learning, pages 448--456. PMLR, 2015. [ bib | DOI ] |
[43] |
R. Sadeghi and F. A. Mohammadi. HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residuesA Combined Feature-Learning Method Based on Simulated Annealing Algorithm and Genetic Programming (Case Study: Malignant Breast Cancer Diagnosis). Tabriz journal of electrical engineering, 48(1):127--136, 2018. [ bib | DOI ] |
[44] |
A. H. Gandomi and E. Atefi. Software review: the GPTIPS platform. Genetic Programming and Evolvable Machines, 21(1):273--280, 2020. [ bib | DOI ] |
[45] |
C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1--27, 2011. [ bib | DOI ] |
[46] |
G. Sharma, A. Panwar, I. Nasiruddin, and R. C. Bansal. Non-linear LS-SVM with RBF-kernel-based approach for AGC of multi-area energy systems. IET Generation, Transmission & Distribution, 12(14):3510--3517, 2018. [ bib | DOI ] |
[47] |
C. Wang. Optimization of SVM method with RBF kernel. In Applied Mechanics and Materials, pages 2306--2310. Trans Tech Publ, 2014. [ bib | DOI ] |
[48] |
H. Hotait, X. Chiementin, M. S. Mouchaweh, and L. Rasolofondraibe. Monitoring of Ball Bearing Based on Improved Real-Time OPTICS Clustering. Journal of Signal Processing Systems, 93(2):221–237, 2021. [ bib | DOI ] |
[49] |
E. Petsalaki, A. Stark, E. García-Urdiales, and R. B. Russell. Accurate Prediction of Peptide Binding Sites on Protein Surfaces. PLoS computational biology, 5(3), 2009. [ bib | DOI ] |
[50] |
M. M. Stepniewska-Dziubinska, P. Zielenkiewicz, and P. Siedlecki. Improving detection of protein-ligand binding sites with 3D segmentation. Scientific reports, 10(1):1--9, 2020. [ bib | DOI ] |
[51] |
J. Yang, A. Roy, and Y. Zhang. BioLiP: a semi-manually curated database for biologically relevant ligand--protein interactions. Nucleic acids research, 41(D1):D1096–D1103, 2013. [ bib | DOI ] |
[52] |
A. Mandloi. A Comparative Study of Pointwise Convergence and Uniform Convergence. International Journal of Mathematics Trends and Technology (IJMTT), 67(2):83--84, 2021. [ bib | DOI ] |
[53] |
K. Lakshmanan. On convergence to the global optima. ArXiv, 2021. [ bib | DOI ] |
|