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A B S T R A C T

Elliptic curve cryptography (ECC) is one of the most popular public key systems

in recent years due to its both high security and low resource consumption.

Thus, ECC is more appropriate for Internet applications of Things, which are

mainly involved with limited resources. However, non-invasive side channel

attacks (SCAs) are considered a major threat to ECC systems. In this paper,

we design a processor for the ECC in the binary field, resistant to Differential

Power Attacks (DPA). The main operations in this architecture are randomized

Montgomery multiplication and division units, which make it impossible

to create differential power attacks by involving a random number in the

calculation process. The goal is to accelerate the operation by opening the loops

in the Montgomery randomized multiplication/division units, and accordingly,

a bit-parallel design instead of bit-serial design. The results show that, despite

the complexity of the logic in the two/three-bit processing versions, the speed

is significantly improved by accepting a slight increase in the area resource.

Further, our design is flexible wherein the top-level module, depending on the

area-speed trade-off, a variety of multiplier and divisor units can be selected.

The FPGA evaluations show that in terms of Time×Slice metric, the 2-bit

divider/3-bit multiplier version of our architecture leads to a 40% improvement

over the best previous work. Further, by duplicating the divider and multiplier

modules along with the bit-parallel architecture this gain can reach to 50%.

In terms of operation speed, our design versions are faster than previous work

by a factor of 1.87 and 3.29. Furthermore, ASIC evaluations in terms of the

Time×Area metric, indicate that deploying a 2-bit multiplier leads to a 19%

gain relative to previous well-known work. Moreover, duplication of modules

along with bit-paralleling amplifies the overall gain up to 36%.
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1 Introduction

Elliptic curve cryptography (ECC) is a widely used
public key cryptosystem [1] since it offers an equivalent
security margin along with shorter key length relative
to other public key cryptosystems such as RSA and
discrete logarithm [2].

https://dx.doi.org/10.22108/JCS.2021.123698.1051
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As security is implemented in various network levels,
such as IP security (IPsec), secure socket layer (SSL),
and Application, a low-latency implementation of an
asymmetric cryptosystem is crucial and accordingly is
a main subject of research. Further, for the resource-
limited device that is used in embedded systems low-
complexity implementation is important. Scalar point
multiplication is the basic operation in ECC which
most of the upper layer protocols use as the basic
primitive. Thus, the entire performance of most ECC
protocol is dependent on the performance of scalar
point multiplication. Some of the works such as [3]
and [4] tried to adjust the ECC processor according
to the requirements of various Internet of Things
environments such as low hardware complexity and
processing time.

Beyond the performance from the security point of
view, the private data of an unprotected hardware
device can be extracted by physical attacks due to
side-channel leakage. Based on the methods selected
by an adversary, the attacks can be categorized as sim-
ple/ differential power-analysis (SPA/DPA) proposed
by Kocher [5], timing analysis (TA), and correlation
power analysis(CPA) [6].

The basic countermeasure method for avoiding sim-
ple power/time analysis is a double-and-add-always
method which is primarily deployed by the Mont-
gomery Ladder algorithm.

The authors in [4] defined an emerging family of
lightweight ECC in the prime field such as MoTE
curves to meet the development requirement on
resource-constrained devices. The parameterized im-
plementation has two optimized-specific designs: the
high-speed version (HS) and the memory-efficient
(ME) version. Some efforts are taken to harden the de-
ployed library against some basic side-channel attacks,
e.g., timing attacks and simple power analysis attacks.

The authors, in [7], proposed an ECC processor
based on the Globally Asynchronous Locally Syn-
chronous (GALS) with focusing on the resistances of
design against side-channel attacks (SCAs). The pau-
sible clocking scheme, with random hopping of clock
frequencies, is applied as a countermeasure of SCAs
with low overhead to inject timing uncertainty on the
cryptographic operations.

On the other side, the DPA and CPA attacks which
investigate the correlation between target power traces
and power model can reveal the key-value due to
the existence of key-dependent operations in every
round of calculation. The countermeasure methods
for avoiding such attacks involve hiding techniques
with algorithm-independent dedicated circuit [8] and
masking the processed data at the algorithm level [9].

However, most of these methods practically fail due
to the additional cost of area and time.

In a prominent work, Lee et al. [10] have proposed a
novel DPA resistant algorithm in GF(p) performing all
field operations in a randomized Montgomery domain
to eliminate the correlation between the measured
target power traces and the power reference model.
The basic idea of the algorithm is a transformation of
the operands into a randomized Montgomery domain
A ≡ a.2λ (mod p), where the domain value λ equals
the Hamming weight (HW) of an n-bit random value.
The random value is selected at the start of scalar
point multiplication, and accordingly transforming the
x/y coordinates of base-point into a random domain.
All of the subsequent point addition and doubling
are done in the randomized domain by the means
of RMM, Randomized Montgomery Multiplier, and
RMD, Randomized Montgomery Divider algorithm.
Finally, the result is transformed back into the original
domain by two RMM operations with identity operand
1.

Liao et al. [11] extended the work of Lee from two
aspects. First, it represents a randomized Montgomery
Ladder Algorithm in GF(2m) with the aims of Ran-
domized Montgomery Addition, Multiplication, and
Division modules. Second, it comes up with a division
algorithm whose iterations are constant and are inde-
pendent of the input value. This causes the system
time constant combined with the Montgomery Ladder
algorithm for scalar multiplication. It is worth noting
that the work of Liao is done in affine coordinates. The
main shortcoming of Liao architecture is the bit-serial
implementation which shows a large gap between the
speed of the proposed coprocessor relative to other
designs in projective coordinates such as [12].

In this paper, we propose an efficient ECC copro-
cessor in GF(2m) in affine coordinates resistant to
passive SCA attacks. Similar to [10] and [11], the main
resistant technique is the operation in the randomized
Montgomery domain. In comparison to [10], our ECC
coprocessor operates in the binary field rather than
a prime field. Further, compared to Liao design [11],
we present a bit-parallel architecture for both multi-
plication and division modules. The goal is to speed
up the scalar point multiplication and accordingly en-
tire ECC operation relative to bit-serial architecture.
Further, this is a long step to reduce the large gap
between the performance of the ECC coprocessor in
affine coordinates relative to ECC in projective coor-
dinates. The evaluation results show that our ECC
coprocessor, by reducing the iteration time of the mul-
tiplication and division, outperforms in both time and
time-area objectives, the previous related works.
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1.1 Contributions of the Work

The main contributions of this paper can be summa-
rized as follows:

• We propose a bit-parallel algorithm for ḱ-bit ran-
domized modular multiplier (ḱ64), as well as a
bit-parallel algorithm for k-bit randomized modu-
lar divider (k63), that reduces the required cycles

for multiplication/division by a factor of ḱ/k.
• Based on these modules, we present a noninva-

sive SCAs resistant coprocessor, namely RMD-
k/RMM-ḱ, that performs scalar point multipli-
cation in GF(2m) based on randomized Mont-
gomery Ladder.

• Further, by accepting redundant modules, we
present a flexible coprocessor in GF(2m), namely

RMD2-k/RMM2-ḱ, that consists of two multipli-
ers and two divider modules.

• We discuss the trade-off between time and area
objectives to find the optimized value for both k
and ḱ in RMD-k/RMM-ḱ and RMD2-k/RMM2-

ḱ regarding time, area, and time-area optimized
design.

The rest of this paper is outlined as follows. Sec-
tion 2 gives a brief background of ECC for GF(2m)
along with a brief introduction of the Liao work [5]
for the Randomized Montgomery Ladder algorithm
for scalar multiplication. The bit-parallel randomized
Montgomery multiplier and divider is introduced and
explained in Section 3. The overall architecture of the
ECC coprocessor is discussed in Section 4, including
two designs; resource-optimized and time-optimized
based on allowing/disallowing redundant RMM and
RMD modules. In Section 5, the evaluation results are
presented which gives the performance analysis of the
proposed coprocessor and the comparison with other
related works based on the synthesis results. Finally,
Section 6 concludes the paper.

2 Preliminarily

2.1 ECC Over GF(2m)

A non-supersingular elliptic curve E is defined over
either a binary finite field GF(2m) or GF(p). For
binary field, the set of points along with a point at
infinity satisfies the reduced Weierstrass equation:

E : y2 + xy = x3 + ax2 + b (1)

where a,b∈GF(2m) and b6=0. This curve over binary
field is suitable for hardware implementation. While
the curve E : y2 + xy = x3 + ax2 + b over GF(p),
prime field, is proper for software implementation.
The addition of two points is a primary operation

on the group constructed by an elliptic curve. The
other primary operation includes the addition of two
similar points which refers to point doubling. Assume
P1 = (x1, y1) and P2 = (x2, y2) are two points on
the curve defined by Equation (1). We can show that
the addition of these points, P3 = (x3, y3) = P1 + P2,
is obtained by Equation (2). Further, the doubling
of P1, denoted by P4 = (x4, y4) = 2P1, is given by
Equation (3).

x3 =
(
y1+y2
x1+x2

)2

+ y1+y2
x1+x2

+ x1 + x2 + a

y3 =
(
y1+y2
x1+x2

)
(x1 + x3) + x3 + y1

(2)

x4 =
(
x1 + y1

x1

)2

+ x1 + y1
x1

+ a

y4 = x2
1 + x4

(
x1 + y1

x1

)
+ x4

(3)

It is worth noting that both the equations are de-
fined in affine coordinates which consists of compu-
tationally intensive modular divisions. In many prior
works such as [12], researchers used projective coordi-
nates to avoid divisions by accepting a large number of
extra multiplications and squarings. However, in pro-
jective coordinates a single inversion operation for the
projective to affine coordinates conversion is unavoid-
able which can be achieved with multiplicative inver-
sion based on Fermat’s little theorem. The Itoh-Tsujii
[13] algorithm requires only log2m multiplications
and m-1 repeated squaring operations. In summary,
overall performance of projective coordinate highly
depends on the efficiency of the field multipliers.

However, if the division is well designed, the com-
putation in affine coordinate also becomes a suitable
option for high-performance ECC design. This work
investigates the bit-parallel architecture for the di-
vider module in addition to the multiplier module. Bit-
parallel processing is a crucial technique for achieving
better performance if the time-area tradeoff is well
discussed and resolved.

2.2 Liao Randomized Montgomery Ladder

In this section, we describe the Randomized Mont-
gomery Ladder Algorithm, namely RMLA, proposed
by Liao [11]. This is a typical extension of the Mont-
gomery Ladder algorithm (MLA) which involves a
random parameter to make the algorithm resistant
against differential power attack [10]. MLA is one of
the most widely used algorithms for fast scalar mul-
tiplication, which efficiently completes the operation
with m iterations for m-bit ECC. The MLA constant
runtime provides an inherent way to resist simple
SCAs (such as SPA) since the type of operation is
independent of the current bit value of scalar k.
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Algorithm 1 Randomized Montgomery Ladder
(RMLA).

INPUT: scalar k = km−11k0, where km−1 = 1, base
point P , f(x),
OUTPUT: k.P

1: set α← a m-bit random number;
2: set X ← RMD(P.x, 1, f, α)
3: set Y ← RMD(P.y, 1, f, α)
4: set PT ← (X,Y )
5: set P1 ← PT , P2 ← 2PT
6: for i← m− 2 downto 0 do
7: if (ki =10) then
8: P1 ← P1 + P2, P2 ← 2P2

9: else
10: P1 ← 2P1, P2 ← P1 + P2

11: end if
12: end for
13: set x← RMM(P1.x, 1, f, α)
14: set y ← RMM(P1.y, 1, f, α)
15: return (x, y);

Algorithm 2 Bit-Serial Randomized Montgomery
Multiplier (RMM) [11].

INPUT: A(x), B(x), f(x), α
OUTPUT: C(x) = A(x).B(x).x−β mod f(x)

1: set R← A,S ← B,Q← 0, T ← α,
2: for i← 0 downto m− 1 do
3: if (R[0] == 1 && T [0] == 0) then
4: Q← Q
5: else
6: if (R[0] == 1 && T [0] == 0) then
7: Q← Q+ S;
8: else
9: if (R[0] == 0 && T [0] == 1) then

10: Q← Q.x−1 mod f ;
11: else
12: Q← (Q+ S).x−1 mod f ;
13: end if
14: end if
15: end if
16: if (T [0] == 0) then
17: S ← S.x mod f ;
18: elseS ← S
19: end if
20: end for
21: return Q

The defined randomized Montgomery arithmetic are
utilized to prevent the first-order noninvasive SCAs.
It realizes the randomness based on a randomly gener-
ated number α for every scalar multiplication, which
breaks the statistical dependence of the side-channel
leakages on the real-time operating data. Thus, the
adversaries are incapable of utilizing the leakages to
conduct all kinds of first-order noninvasive SCAs, in-

Figure 1. Operation Sequences for RMLA (Liao ECC Copro-
cessor [11]).

cluding differential PA attacks, correlation PA, and
template attacks.

Let f(x) denotes an irreducible polynomial of de-
gree m in GF(2m. For the desired polynomial, a(x) of
degree m-1, the corresponding representation in ran-
domized Montgomery domain will be A(x) = a(x).xβ ,
where β is the Hamming Weight of a random m-bit
binary number α. The binary finite field arithmetic
in the randomized Montgomery domain is defined as
follows:

Randomized Montgomery Addition (RMA):
C(x) = RMA(A(x), B(x)) =
(a(x) + b(x)).xβmodf(x) = c(x).xβmodf(x)

Randomized Montgomery Multiplication (RMM):
C(x) = RMM(A(x), B(x)) = A(x).B(x).x−β =
a(x).b(x).xβmodf(x) = c(x).xβmodf(x)

Randomized Montgomery Division (RMD):
C(x) = RMD(A(x), B(x)) = A(x)/B(x).xβ =
a(x)/b(x).xβmodf(x) = c(x).xβmodf(x)

The details of RMLA are described in Algorithm 1.
In addition to the base point P and the integer k, a
random number α and f(x) are given as inputs. For
conversion to the randomized domain, a single RMD
operation with identity polynomial 1 is sufficient. As
we see in Algorithm 1, the base point is transformed
to the randomized domain by two RMD operations
at the beginning of the algorithm. The main loop of
the algorithm repeats the point addition and doubling
according to each bit of scalar k. The operation of
point addition and doubling, depicted in Figure 1, is
accomplished by a sequence of RMA, RMM, and RMD
modules. Ultimately, the final result is converted back
to the original domain by two RMMs with identity
polynomial 1.

Randomized Montgomery multiplication and divi-
sion, namely RMM and RMD, are respectively shown
in Algorithms 2 and 3 [11]. Both the algorithms have
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Algorithm 3 Liao Bit-Serial Randomized Montgomery Divider (RMD) [11].

INPUT: A(x), B(x), f(x), α
OUTPUT: C(x) = A(x)/B(x).xβ mod f(x)

1: set R← B,S ← f, U ← A, V ← 0, T ←, count← 0
2: for i← 0 to 2m− 1 do
3: if (R[0] = 0) then
4: R← R/x, S ← S, count← count+ 1
5: if (T [0] = 0) then
6: U ← U, V ← V.x mod f ;
7: else
8: U ← U/x mod f, V ← V ;
9: end if

10: else
11: if (R[0] = 1 && count > 0) then
12: R← (R+ S)/x; S = R, count← −(count+ 1);
13: if (T [0] = 1) then
14: U ← U + V ;V ← V.x mod f ;
15: else
16: U ← (U + V )/x mod f ;V ← U ;
17: end if
18: else
19: R← (R+ S)/x;S ← S, count← count+ 1;
20: if (T [0] = 1) then
21: U ← U + V ;V ← V.x mod f ;
22: else
23: U ← (U + V )/x mod f ;V ← V ;
24: end if
25: end if
26: end if
27: if (i 6 m− 2) then
28: T ← T >> 1;
29: elseT ← 0
30: end if
31: end for
32: return C = V

bit-serial implementation. The former is fulfilled by m
iterations while the latter is accomplished across 2m
iterations. This algorithm at each clock process a sin-
gle bit of both registers R and T and correspondingly
repeats for 2m times.

The formula which is used for point addition and
point doubling is respectively denoted by the Equa-
tions (4) and 5. These are an extended version of the
basic formula, (2) and (3), wherein the x-coordinate of
the result, x3 in point addition and x4 point doubling,
is eliminated in the evaluation of the y-coordinate [11].


x3 =

(
y1+y2
x1+x2

)2

+ y1+y2
x1+x2

+ x1 + x2 + a

y3 =

[
x1 + a+ 1 +

(
y1+y2
x1+x2

)2
](

y1+y2
x1+x2

)
+x1 + x2 + y2 + a

(4)


x4 = x2

1

(
y1
x1

)2

+ x1 + y1
x1

+ a

y4 = x2
1 + a+

[
x2

1 +
(
y1
x1

)2

+ a+ 1

](
x1 + y1

x1

)
(5)

The flow diagram of the operation sequence for both
point addition and doubling is shown in Figure 2. The
inputs of point addition are denoted by (x1, y1) and
(x2, y2). The point doubling has a single point which
is assumed to be the first point, i.e., (x1, y1). The goal
is the computation of point-addition and doubling
according to Equations (4) and 5. The outputs of the
unit are respectively shown by (x3, y3) for addition
and (x4, y4) for doubling.

The unit has eight m-bit register chains (denoted
by A to H) and seven states (denoted by state1 to
state7). The four input coordinates are latched to
the corresponding register chains in State1, and the
results of point addition and doubling are finally ob-
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Table 1. The Different States of 2-Bits Randomized Divider (“X” Denotes Don’T Care a Bit).

R1R0T1T0
After processing R0T0 After processing R0T0R1T1

Q S Q S

0000 Q S.x Q S.x2

0001 Q.x−1 S Q.x−1 S.x

0010 Q S.x Q.x−1 S.x

0011 Q.x−1 S Q.x−2 S

0100 Q+ S S.x Q+ S S.x2

0101 (Q+S).x−1 S Q.x−1 + S.x−1 S.x

0110 Q+ S S.x Q.x−1 + S.x−1 S.x

0111 (Q+S).x−1 S Q.x−2 + S.x−2 S

1000 Q S.x Q+ S.x S.x2

1001 Q.x−1 S Q.x−1 + S S.x

1010 Q S.x Q.x−1 + S S.x

1011 Q.x−1 S Q.x−2 + S.x−1 S

1100 Q+ S S.x Q+ S + S.x S.x2

1101 (Q+S).x−1 S Q.x−1 + S.x−1 + S S.x

1110 Q+ S S.x Q.x−1 + S.x−1 + S S.x

1111 (Q+S).x−1 S Q.x−2+S.x−2+S.x−1 S

Figure 2. Operation Sequences For RMD2 − k/RMM2-ḱ.

tained in State7. In each state, different operations
are executed to generate fresh data and update the
relevant register chains. The operations in each state
are done by a subset of one RMD, one RMM, and
three RMA modules (RMA1, RMA2, and RMA3).

The delay of both state2 and state3 is identified
by the clocks required to complete the RMD com-
putations, i.e. equals 2m, while the delay of three
subsequent states (4, 5, and 6) are identified by the
clock numbers consumed by the RMM module, i.e., m.
Thus, the total clock number required for one round
of point-addition/doubling equals 7m+1.

3 Parallel-Bit Processing Multiplier
and Divider

The basic idea is to replace of bit-serial multiplier
and divider with multi-bit versions. For multiplier,
we propose 2-bit, 3-bit, and 4-bit processing versions.
Due to the complexity of the divider algorithm, only
2-bit and 3-bit versions are discussed in this paper.

3.1 2-Bit Randomized Multiplier

The Liao bit-serial randomized multiplier, namely
RMM, is shown in Algorithm 2. It uses four regis-
ters R, S, Q, and T which are initially assigned by A
(first operand), B(second operand), zero, and α (ran-
dom number). At each clock, the value of Q and S
is updated corresponding to the least significant bit
of registers R and T . The value of Q is dependent on
both R(0) and T (0) while S depends only on T (0).
Thus, Q gets one of the expressions Q, Q+ S, Q.x−1,
or (Q+ S)x−1 while S is assigned either by S or S.x.
The loop repeats for m times, the size of the field, and
finally Q is returned as the result of the product.

The formulation can be simplified respectively to
only 12 distinct states for evaluation of Q and 3 states
for evaluation of S. According to Table 1, we see that
Q is equal to the sum of a subset of {Q, S, Q.x−1,
S.x−1, Q.x−2, S.x−2} while S has simpler form and
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Algorithm 4 Randomized 2-Bit Multiplier (RMM-
2).

INPUT: A(x), B(x), f(x), α
OUTPUT: C(x) = A(x).B(x).x−β mod f(x)

1: setR← A,S ← B,Q← 0, T ← α;
2: n← (m+ 1)/2;
3: for i← 1 to n do
4: switch R(1)R(0)T (1)T (0)
5: case ”0000” : Q← Q;
6: case ”0001”,”0010”: Q← Q.x−1 mod f ;
7: case ”0011” : Q← Q.x−2 mod f ;
8: case ”0100” : Q← Q+ S;
9: case ”0101”,”0110”: Q ← (Q + S).x−1 mod
f ;

10: case ”0111” : Q← (Q+ S).x−2 mod f ;
11: case ”1000” : Q← Q+ (S.x mod f);
12: case ”1001”,”1010”:Q← (Q.x−1 mod f)+S;
13: case ”1011” : Q← Q.x−2 + S.x−1 mod f ;
14: case ”1100” : Q← (Q+ S) + S.x mod f ;
15: case ”1101”,”1110”: Q ← (Q + S).x−1 mod

f + S;
16: case ”1111”: Q← (Q+ S).x−2 + S.x−1 mod

f ;
17: end switch;
18: switch T (1)T (0)
19: case ”00” :S ← S.x2 mod f ;
20: case ”11” : S ← S;
21: case ”10”, ”01” : S ← S.x mod f ;
22: end switch;
23: R← R >> 2;
24: T ← T >> 2;
25: end for
26: return Q

is equal to one of the S, S.x, and S.x2. The above-
mentioned formulation can be used to deploy a 2-
bit randomized modular multiplier, 2-bit RMM. This
algorithm at each clock process 2-bits of registers
R and T and correspondingly repeats only for M/2
times. The detail of 2-bit RMM (RMM-2) is shown in
Algorithm 4.

3.2 3/4-Bit RandomizedMultiplier (RMM-3
and RMM-4)

We can extend multi-bit processing to a higher bit
similar to a 2-bit multiplier. For a 3-bit multiplier
(RMM-3), the three least significant bits of both R
and T registers are used for computation of Q and S.
Thus, we will have at most 64 states. By simplification,
33 distinct states have remained for computation of
Q. The value of S is equal to one of the S, S.x, S.x2

and S.x3. For the lack of space, we ignore bringing
the details for computation of Q.

Further, for the 4-bit multiplier (RMM-4), the 4

least significant of R and T are included in computa-
tion which leads to 256 states. After simplification,
there are only 111 distinct states for computation of
Q. The value of S is equal to one of the S, S.x, S.x2

and S.x3, and S.x4.

3.3 2-Bit Randomized Divider (RMD-2)

The Liao bit-serial randomized modular divider,
namely RMD, is shown in Algorithm 3. It uses five
registers R, S, U , V , and T which are initially as-
signed by A (second operand), irreducible polynomial
(f), B(first operand), zero, and α (random number),
respectively. At each clock, the value of U , V , R, and
S is updated corresponding to the least significant bit
of registers R, T , and an internal variable Count.

The value of R, S, and Count depends on R(0) and
the sign of Count. While U , V is dependent on T (0)
as well as R(0) and the sign of Count. Register U is
assigned by one of the expressions U , U.x−1, U +V,
and (U+V ).x−1 while V is assigned by V , U , V.x, or
U.x. Further, R is changed by a type of modular shift,
i.e., based on the value of R(0) is assigned either by
R or R+ S shifted 1-bit to right.

The loop repeats 2m times, and finally, V is returned
as the result of division. Our idea is the opening of the
loop and processingR(1)T (1) in addition toR(0)T (0).
For similar but simple work, we can point to [14]. We
will have 32 states at all which are shown in Table 2.
Further, we need a new variable Count2 in addition to
Count to complete the division state. We can see that
U is not dependent on the sign of Count2. Count2 is
only used in few cases for computation of V . Further,
Instead of using R(1) directly, we use a modular shift
of R, shifting 1-bit to right either R or R+ S based
on the value of R(0), and correspondingly using the
least significant bit of the result, namely R1(0). For
simplicity, we omit the mod f from the expressions.
After simplification, there are 15 distinct states left
for evaluating U and 10 states for V . We see that both
U and V are equal to the sum of a subset of V , V.x−1,
V.x−2, U, U .x±1, U .x±2. the value of R, S, and Count
are respectively updated based on the value of R1, S1,
and Count2.

We can use this formulation to deploy a 2-bit ran-
domized modular divider, namely RMD-2. This algo-
rithm at each clock process 2-bits of registers R and
T and correspondingly repeats only for m times. The
detail of RMD-2 is shown in Algorithm 5.

3.4 3-Bit Randomized Modular Divider
(RMD-3)

Similar to a randomized multiplier, we can extend
multi-bit processing for a divider. For the complexity
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Table 2. The Different States of 2-Bits Randomized Divider (“X” Denotes Don’T Care a Bit).

R1(0)R(0)T (1)T (0)
Sign

(Count)
Sign(Count2) After Processing R(0)T(0) After Processing R(0)T(0)R1(0)T(1)

V U V U

0000 X X V U.x−1 V U.x−2

0001 X X V.x U V.x2 U

0010 X X V U.x−1 V.x U.x−1

0011 X X V.x U V.x U.x−1

0100 + X U (U + V ).x−1 U (U + V ).x−2

0101 - X V (U + V ).x−1 V (U + V ).x−2

0110 + X U.x U + V U.x2 U + V

0111 - X V.x U + V V.x2 U + V

1000 + X U.x U + V U.x (U + V ).x−1

1001 - X V.x U + V V.x (U + V ).x−1

1010 + X U (U + V ).x−1 U.x (U + V ).x−1

1011 - X V (U + V ).x−1 V.x (U + V ).x−1

1100 + X V U.x−1 U.x−1 U.x− 2 +V.x−1

1101 - X V U.x−1 V U.x− 2 +V.x−1

1110 + X V.x U U.x U + V.x

1111 - X V.x U V.x2 U + V.x

0000 + X V.x U U U.x−1 + V

0001 - X V.x U V.x U.x−1 + V

0010 + X V U.x−1 U U.x−1 + V

0011 - X V U.x−1 V.x U.x−1 + V

0100 + X U (U + V ).x−1 U
(U+V)x-

2+U.x-1

0101 - + V (U + V ).x−1 (U+V).x-
1

(U+V).x-

2+V.x-1

0110 - - V (U + V ).x−1 V
(U + V ).x−2 +

V.x−1

0111 + X U.x U + V U.x2 U + V + U.x

1000 - - V.x U + V
(U +

V ).x
U + V + V.x

1001 - X V.x U + V V.x2 U + V + V.x

1010 + X U.x U + V U.x (U+V ).x−1+U

1011 - + V.x U + V U + V (U+V ).x−1+V

1100 - - V.x U + V V.x (U+V ).x−1+V

1101 + X U (U + V ).x−1 U.x (U+V ).x−1+U

1110 - + V (U + V ).x−1 U + V (U+V ).x−1+V

1111 - - V (U + V ).x−1 V.x (U+V ).x−1+V

of division, we only present an algorithm processing
3-bit in each step. Opening the loop by a factor of 3
leads to the process of three bits of R and Three bits

of T along with a sign of three counters which results
in 29=512 different states at all. A better approach
is to combine the operation of RMD-2 with a bit-
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serial RMD which leads to 8×15 states for U and
8×10 states for V . The lack of space prevents us to
bring all the details of computations. Our evaluations
show that the corresponding states further can be
reduced to 50 distinct states for U and 27 states for
V . Table 3 summarizes the complexity of randomized
multiplier, 1-bit RMM through 4-bit RMM, along
with randomized divider, RMD-1bit through RMD-3.

4 Overall Architecture

In this section, the primitive operations of the pro-
cessor will be discussed. Next, we propose two archi-
tectures for the ECC processor. The first is RMD-
ḱ/RMM-k which is the Liao architecture with a little
difference that RMM and RMD modules are replaced
by RMM-k and RMD-ḱ, respectively. The second
which is denoted by RMD2-k/RMM2-ḱ, is a new archi-
tecture with two multipliers and two divider modules
of type RMM-k and RMD-ḱ.

4.1 Primitive Operations

The basic operations for the proposed modular multi-
plier/divider are classified into shifting right, bitwise
XOR, and modular multiplication of x±k. The first
and second ones are trivial operations that are simply
implemented in hardware, while the last operation
needs to be represented in a convenient non-algebraic
formula. Let f(x) be the irreducible polynomial of
degree m, represented by:

f(x) = f0 + f1x+ ..+ fm−1x
m−1 + xm

It is implied that the coefficient of both xm and x
is 1 (f0=1). Thus, we will have the following formulas
for xm and x−1:

{
xm = f0 + f1x+ ..+ fm−2x

m−2 + fm−1x
m−1(modf)

x−1 = f1 + f2x+ ..+ fm−1x
m−2 + f0x

m−1(modf)

(6)

For the desired polynomial Q(x) of degree m, we
can write Q(x).x as:

Q(x).x = (q0 + q1x+ ..+ qm−1x
m−1)x

= q0x+ q1x
2 + ..+ qm−2x

m−1 + qm−1x
m

= q0x+ q1x
2 + ..+ qm−2x

m−1

+ qm−1(f0 + f1x+ ..+ fm−1x
m−1)

= qm−1f0 + (q1 + qm−1f1)

+ ..+ (qm−2 + qm−1fm−1)xm−1

(7)

Q(x).x−1 = q0x
−1 + q1 + q2x..+ qm−1x

m−2

= q0(f1 + f2x+ ..+ fm−1x
m−2

+ f0x
m−1) + q1 + q2x..+ qm−1x

m−2

= (q1 + q0f1)

+ (q2 + q0f2)x+ ..+ (qm−1 + q0fm−1)x

+ q0f0x
m−1

(8)

According to Equations (7) and 8, both Q(x).x and
Q(x). x−1 can be implemented in hardware by a sin-
gle AND layer followed by a single XOR layer consist-
ing of m gates AND plus m gates XOR. For higher
degree of modular multiplication, we can use recur-
sive multiplication, i.e., Q(x).x−2= (Q(x).x).x. Equa-
tions (9) and 11 respectively represent the evaluation
for Q(x).x−1, Q(x).x−k, Q(x).x and Q(x).xk. This
formulation implies that Q(x).x±k is implemented by
subsequent of k modules, each of them consists of a
AND layer followed by a XOR layer. The required
elements include km gates XOR as well as km gates
AND.

X(m,n) =

{
q0f0 i = m− 1

qi+1 ⊕ q0fi+1 0 ≤ i ≤ m− 2
(9)

q−ki =

{
q
−(k−1)
0 f0 i = m− 1

q
−(k−1)
i+1 ⊕ q−(k−1)

0 fi+1 0 ≤ i ≤ m− 2

(10)

q1
i =

{
qi−1 ⊕ qm−1fi 1 ≤ i ≤ m− 1

qm−1f0 i = 0
(11)

qki =

{
qk−1
i−1 ⊕ q

k−1
m−1fi 1 ≤ i ≤ m− 1

qk−1
m−1f0 i = 0

(12)

4.2 Operation Sequences

In this section, the sequence of operations for the ECC
processor is discussed. The operations include both
point addition and point doubling which are parallelly
executed in the Montgomery Ladder algorithm. We
will study two architectures denoted by RMD-k/RMM-

ḱ and RMD2-k/RMM2-ḱ, respectively. It is worth

noting that both k and ḱ are small integers which is
not greater than 4.

The former consists of three addition modules, one
multiplier of type RMM-ḱ and one divider of type
RMD-k. The latter benefits from replication of the
multiplier and divider modules. It consists of three
addition modules along with two multipliers of type
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Algorithm 5 Randomized 2-Bit Divider(“X” Denotes Don’T Care Bit).

INPUT: A(x), B(x), f(x), α
OUTPUT: C(x) = A(x)/B(x).x−β mod f(x)

1: n← (m+1) when (m is odd) else m;
2: R,S,R1, S1, Count, Count2 : n+1-bit Register;
3: U, V, T : n-bit Register;
4: set R← B,S ← f, U ← A, V ← 0, T ← α,Count← 0;
5: for i← 1 to n do
6: R1 ← (R >> 1) when R(0) = ‘0′ else (R+ S) >> 1
7: S1 ← R when (R(0)=’1’ and Count > 0) else S
8: Count2← −(Count+ 1) when (R(0)=’1’ and Count > 0)
9: else (Count+1)

10: switch R− 1(0)R(0)T (1)T (0)sign(Count)
11: case ”0000X” : U ← U.x−2 mod f ;
12: case ”0011X” : U ← U ;
13: case ”0010X” , ”0001X” : U ← U.x−1 mod f ;
14: case ”0100X” : U ← (U + V ).x−2 mod f ;
15: case ”0111X” : U ← U + V ;
16: case ”0101X” , ”0110X” : U ← (U + V ).x−1 mod f ;
17: case ”0011X” : U ← U.x−2 + V.x−1 mod f ;
18: case ”1011X” : U ← U + (U + V ).x mod f ;
19: case ”1001X” , ”1010X”: U ← U.x−1 mod f + V ;
20: case ”11000” : U ← (U + V ).x−2 + U.x−1 mod f ;
21: case ”11001” : U ← (U + V ).x−2 + V.x−1 mod f ;
22: case ”11110” : U ← U + V + U.x mod f ;
23: case ”111111” : U ← U + V + V.x−2 mod f ;
24: case ”11010” , ”11100” : U ← (U + V ).x−1 mod f + U ;
25: case ”11011” , ”11101” : U ← (U + V ).x−1 mod f + V ;
26: end switch;
27: switch R1(0)R(0)T (1)T (0) sign(Count)sign(Count2)
28: case ”0000XX” , ”01001X” , ”10001X”,
29: ”110011” : V ← V ;
30: case ”0011XX” , ”01111X” , ”10111X”,
31: ”111111”: V ← V.x2 mod f ;
32: case ”0010XX” , ”0001XX” , ”01011X” , ”01101X”,
33: ”10011X” , ”10101X” , ”110111”,
34: ”111011” : V ← V.x mod f ;
35: case ”01000X” , ”10010X” , ”11000X” ,
36: ”10100X” : V ← U ;
37: case ”01110X” , ”11110X” : V ← U.x2 mod f
38: case ”01010X” , ”01100X” , ”10110X” , ”11010X” , ”11100X” : V ← U.x mod f
39: case ”10000X” : V ← U.x−1 mod f ;
40: case ”110010” : V ← (U + V ).x−1 mod f ;
41: case ”111110” : V ← U.x+ V.x mod f ;
42: case ”110110” , ”111010” : V ← U + V ;
43: end switch;
44: T ← T >> 2 ;
45: R← (R1 >> 1) when R1(0) = ‘0′ else (R1 + S1) >> 1
46: S ← R1 when (R1(0) = ‘1′ and Count2 > 0) else S1

47: Count← −(Count2 + 1) when (R1(0) = ‘1′ and Count2 > 0)
48: else (Count2+1)
49: end for
50: return V
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Table 3. The Specifications of Bit-Parallel RMM and RMD.

Module
Distinct states Combinational XOR

Q S U V units fan-in

RMM-1 4 2 - - Q.x−1, S.x±1 2

RMM-2 12 3 - - Q.x−1, Q.x−2, S.x±1, S.x±2 3

RMM-3 33 4 - - Q.x−1, Q.x−2, Q.x−3, S.x±1, S.x±2, S.x±3 4

RMM-4 111 5 - - Q.x−1, Q.x−2, Q.x−3, Q.x−4, S.x±1, S.x±2, S.x±3, S.x±4 5

RMM-1 - 2 4 4 V.x−1, U.x±1 2

RMM-2 - 4 15 10 V.x−1, V.x−2, U.x±1, U.x±2 3

RMM-3 - 8 50 27 V.x−1, V.x−2, V.x−3, U.x±1, U.x±2, U.x±3 4

RMM-ḱ and two dividers of type RMD-k.

4.2.1 RMD-k/RMM-ḱ

The flow diagram of the operation sequence for both
point addition and doubling is shown in Figure 1. The
sequences are the same as Liao architecture except
that the RMD/RMM module is replaced by RMD-

k/RMD-ḱ. The inputs of point addition are denoted
by (x1, y1) and (x2, y2). The point doubling has a
single point which is assumed to be the first point, i.e.,
(x1, y1). The goal is the computation of point-addition
and doubling according to Equations (4) and 5. The
outputs of the unit are respectively shown by (x3, y3)
for addition and (x4, y4) for doubling.

The unit has eight m-bit register chains (denoted
by A to H) and seven states (denoted by state1 to
state7). The four input coordinates are latched to
the corresponding register chains in State1, and the
results of point addition and doubling are finally ob-
tained in State7. In each state, different operations
are executed to generate fresh data and update the
relevant register chains. The operations in each state
are done by a subset of one RMD, one RMM, and
three RMA modules (RMA1, RMA2, and RMA3).

The delay of both state2 and state3 is identified by
the clocks required to complete the RMD computa-
tions, i.e. equals to 2m/k. While the delay of three sub-
sequent states (4, 5, and 6) are identified by the clock

numbers consumed by the RMM module, i.e., m/ḱ.
Thus, the total clock number required for one round
of point-addition/doubling equals 4m/k + 3m/ḱ+1.

Since the RMLA scalar point multiplication needs
(m-1) iterations, the total number of clock cycles re-
quired for one scalar multiplication can be calculated
as:

NRMD−k/RMM−ḱ =

(m− 1)× (4m/k + 3m/ḱ + 1)

+10m/k + 5m/ḱ + 2

(13)

where the first part is the cost of the main iterations
of RMLA. The second part is the clock cycles required
for coordinates transformations and the initialization
of RMLA including:

1. Two RMD before the main loop for transforming
point to the randomized domain 4m

k
2. Two RMD for transforming constant a and 1 to

the randomized domain 4m
k

3. Two RMM after the main loop 2m
ḱ

4. A single point doubling before the main loop ( 2m
k

+ 3m
ḱ

+ 1)

5. Assignment of the inputs to register chains (1)

By simplification of the above formula, we will have:

NRMD−k/RMM−ḱ =

(4/k + 3/ḱ)m2

+(6/k + 2/ḱ + 1)m+ 1

(14)

Setting ḱ=k=1 leads to delay of Liao architec-
ture which equals 7m2+9m+1. For example, RMD-
2/RMM-3 has a runtime equal to 3m2+4.7m+1 clock
cycles, i.e., approximately 57% reduction relative to
Liao design ((3m2+4.7m+1)/(7m2+9m+1)≈3/7).

4.2.2 RMD2-k/RMD2-ḱ

The same as the previous section, the unit has eight
m-bit register chains (denoted by A to H) and seven
states (denoted by state1 to state7).

The registers A through E are used for point addi-
tion while remained registers (F, G, and H) are used
for point doubling. The four input coordinates are
latched to the corresponding register chains in State1,
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and the results of point addition and doubling are fi-
nally obtained in State7. The operations are done by
two RMD modules (RMD1 and RMD2), two RMM
modules (RMM1 and RMM2), and three RMA mod-
ules (RMA1, RMA2, and RMA3). In each state, some
of the modules are active and thus generate fresh
data updating the corresponding register chains. Both
RMD modules are only active in state3. While RMM
modules are active during state2 through state5. Ta-
ble 4 shows the sequence of operations for each active
module in each state. The flow diagram of operation
sequences is depicted in Figure 2.

The delay of both state2 and state7 is the delay of
the RMA module, i.e., 1 clock cycle. Further, for the
state3, delay of RMD is the major, i.e. equals to 2m/k.
Moreover, the delay of three subsequent states (4, 5,
and 6) are identified by the clock numbers consumed

by the RMM module, i.e., m/ḱ.

Thus, the total clock number required for one round
of point-addition/doubling equals 2m/ḱ+2m/ḱ+3.
Since the RMLA scalar point multiplication needs (m-
1) iterations, the total number of clock cycles required
for one scalar multiplication can be calculated as

NRMD2−k/RMM2−ḱ =

(m− 1)× (2m/k + 2m/ḱ + 3)

+6m/k + 3m/ḱ + 4

(15)

where the first part is the cost of the main iterations
of RMLA. The second part is the clock cycles required
for coordinates transformations and the initialization
of RMLA including:

1. Two RMD before the main loop, parallel execution
with two RMD modules 4m

k
2. Two RMD for transforming constant a and 1 to

the randomized domain, parallel execution 4m
k

3. Two RMM after the main loop, parallel execution
with two RMM modules 2m

ḱ

4. A single point doubling before the main loop ( 2m
k

+ 2m
ḱ

+ 1)

5. Assignment of the inputs to register chains (1)

By simplification of the above formula, we will have:

NRMD2−k/RMM2−ḱ =

(2/k + 2/ḱ)m2

+(4/k + 1/ḱ + 3)m+ 1

(16)

For example, the required clock pulses for RMD2-
2/RMD2-4 becomes 5m2+5.5m+1. Compared with
the Liao design, it is approximately equal to a 79%

Table 4. The Data Flow In RMD2 − k/RMM2-ḱ.

state module Output result

1 → 2

RMA1 x1 + x2

RMA2 y1 + y2

RMA3 y2 + a

2 → 3

RMA1 x1 + a

RMA2 x1 + x2 + a

RMA3 x1 + x2 + y2 + a

RMM1 x21

RMD1 ((y1 + y2))/((x1 + x2))

RMD2 y1/x1

3 → 4

RMA1 x1 + y1 /x1

RMA2 x21 + a

RMM1 [((y1 + y2))/((x1 + x2))]2

RMM2 (y1/x1)2

4 → 5

RMA1
x1 + a+ [((y1 + y2))/((x1 +

x2))]2

RMA2
((y1 + y2))/((x1 + x2) +

x1 + x2 + a)

RMA3 x21+(y1/x1)2 + a

5 → 6

RMA1 x3

RMA2 x4

RMM1
[x1 + a+ 1 + [((y1 +

y2))/((x1 + x2))]2].((y1 +

y2))/((x1 + x2))

RMM2
[x21 + (y1/x1)2 + a+

1].(x1 + y1/x1)

6 → 7
RMA1 y3

RMA2 y4

reduction in the number of clock pulses.

4.3 Putting It All Together

Based on the operation sequence mentioned above,
the overall architecture of the proposed ECC copro-
cessor in the case of redundant multiplier and divider
modules are given in Figure 3. The main parts consist
of the following components:

• Arithmetic modules including RMAs, RMMs,
and RMDs.

• Control and support modules
• Storage modules
• Load and Store modules.

The storage modules include the scalar registers for
parameter k, the register for irreducible polynomial
f , curve coefficients a and b, and the register chains
A through H for maintaining the internal values of
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the point addition/doubling iterations. All of these
registers have m-bit or a slightly higher width (e.g.

m+1). For RMD-k/RMM-ḱ design, the arithmetic
part consists of one RMD, one RMM module, and
three RMA modules. While in RMD2-k/RMD2-ḱ we
have two RMD and two RMM in addition to three
RMA modules. These modules fetch the corresponding
data from the data buses and complete the intended
arithmetic operations.

The Load/Store module is responsible either for
reading the required data including point P and scalar
k from or writing the multiplication result outside
the processor. The data are fed into the system in
chunks of 64 bits and controlled by the signal Data in
indicating a 64-bit portion of input data, Data Out in-
dicating a 64-bit portion of the output result, RegNo
indicating the source/destination register, Part64 indi-
cating the chunk counter, and Load/Store indicating
the direction of data flow.

The Load/Store module has a key role to fix the
required primary input/output pins of the module
independent of the size of the field (m). Further, it
makes the synthesis possible on a device with a limited
number of in/out pins.

Further, the control unit generates control signals at
different operation stages. It is activated by the exter-
nal enable signal Start, reset to initial state, and then
run automatically based on the built-in finite state ma-
chine, loop counters, and the feedback from the least
significant bit of the scalar k. The PRNG module is
responsible for the generation of m-bit random α. It is
simply implemented by an m-bit linear feedback shift
register (LFSR) with the following recurves equation:

zm = zm−1 ⊕ z0 (17)

This parameter is always fed into the arithmetic
modules as a required input. The data exchange mod-
ule is a shared bus that provides the flow of data from
a single register to either another register or an arith-
metic module. Further, as mentioned earlier, it facili-
tates the exchange of data outside the coprocessor via
the Load/Store module.

The Load signals enable the arithmetic modules to
start the demanded arithmetic operations, the selec-
tion signal Sel instructing the management module of
α to stop randomization and outputs the current value
for α. On the other hand, output control signal EReady
indicates the finishing of MLA and the readiness of
output result for locating on the data bus and accord-
ingly for transferring to outside of the coprocessor via
Store module. Note that the state machines for RMD-
k/RMM-ḱ and /RMD2-k//RMM2-ḱ are different.

Figure 3. The Architecture of ECC Coprocessor With Replica-
tive Modules (RMD2 − k/RMM2-ḱ).

The operation sequence for RMD-mathalphak/RMM-

ḱ design is similar to the Liao ECC coprocessor [11].

While for RMD2-k/RMM2-ḱ design, the operation se-
quence corresponds to data flow depicted in Figure 2
and identified by more details in Table 4.

It is worth noting when the system is idle, most
parts of the coprocessor are inactive to reduce the
power consumption. When the input enables signal
Start to become high, the system is activated to ex-
ecute the demanding process including coordinate
transformation and accordingly beginning of MLA
loop. Subsequently, the coprocessor puts the output
result on the data bus and makes the signal Eready
valid to inform the unit requests. Finally, the system
returns to an idle state waiting for a new command.

5 Evaluations

5.1 Implementation Details

For comparison, we simulate and synthesis the pro-
posed ECC processor in Xilinx Vivado. The target
device selected for synthesis is Zynq-7000. We use the
163-bit binary elliptic curve recommended by NIST,
namely B-163, over binary extension field GF(2163).
Although our ECC coprocessor is flexible to imple-
ment the desired curve on any binary field, we choose
NIST 163-bit ECC just for comparison with other
work. The runtime for one scalar multiplication is
calculated by the number of clock cycles from Equa-
tions (14) and 16. Further, the clock time was obtained
from the synthesis of the design.

5.2 Evaluation Results on FPGA

Table 5 summarizes the synthesis results and makes
a comparison with the Liao coprocessor on corre-
sponding metrics. The columns of the table, for both
design RMD-k/RMM-ḱ and RMD2-k/RMM2-ḱ, re-
spectively show:

• the number of slices used for each architecture,
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Table 5. FPGA Implementation Results of ECC Coprocessor Over GF(2163) on Zynq-7000.

DESIGN RMD-k/RMM-ḱ RMD2 − k/RMM2-ḱ

k/ḱ

Number

of

Slices

Clock

Period

(ns)

Clock
cycles

Runtime
(ms)

Speed
(KP)/s

Time×
Slice

Number

of

Slices

Clock

Period

(ns)

Clock
cycles

Runtime
(ms)

Speed
(KP)/s

Time×
Slice

1/1

(Liao)
4987 3.97 187,451 0.74 1344 3.71 7508 4.10 107,579 0.44 2267 3.31

1/2 5151 4.00 147,761 0.59 1692 3.04 8023 4.16 81,173 0.34 2961 2.71

1/3 5281 4.46 134,531 0.60 1667 3.17 7905 4.65 72,371 0.34 2972 2.66

1/4 6794 5.59 127,671 0.71 1401 4.85 10589 5.78 67,807 0.39 2552 4.15

2/1 5523 4.87 134,153 0.65 1531 3.61 7713 4.80 80,849 0.39 2577 2.99

2/2 5623 4.91 94,463 0.46 2156 2.61 7859 4.89 54,443 0.27 3756 2.09

2/3 5725 4.90 81,233 0.40 2512 2.28 8254 4.95 45,641 0.23 4426 1.86

2/4 7104 4.92 74,373 0.37 2733 2.60 12285 5.58 41,077 0.23 4363 2.82

3/1 6367 5.37 116,387 0.62 1600 3.98 9715 5.84 71,939 0.42 2380 4.08

3/2 6631 5.64 76,697 0.43 2312 2.87 9516 6.29 45,533 0.29 3492 2.73

3/3 6735 5.31 63,467 0.34 2967 2.27 10304 5.97 36,731 0.22 4560 2.26

3/4 9149 6.18 56,607 0.35 2859 3.20 13992 6.15 32,167 0.20 5055 2.77

• the clock period in nano-seconds,
• the number of clock cycles for a scalar multipli-

cation acquired by formula (15),
• the runtime of one scalar multiplication in milli-

seconds,
• speed of operation in several operations per sec-

ond,
• production of time and slices count, i.e.,

runtime×slices

Further, Figures 4 and 5 respectively visualize this
comparison based on runtime and time×slice metrics.

We can see that along with the increase in com-
plexity of the circuit basically in combinational parts,
the clock time is increased up to 56% relative to Liao
architecture. The maximum clock which is equal to
6.18 ns belongs to RMD-3/RMM-4. This is due to the
critical path that passes through the combinational
part of either RMD or RMM modules. Those have
primitive operations such as U .x±3 and S.x±4 which
impose 3 and 4 consecutive layers of AND+XOR to
the critical path.

On the other hand, the area has more variation than
the clock period for a different architecture. The range
of variations is between 3% to 83%. The maximum
slices (9149) are used for RMD-3/RMM-4 design which
shows 83% of resource increment relative to the Liao
design, while the minimum difference happens for
RMD-1/RMM-2. More specifically by fixing k, there
is no significant difference between the area consumed
for RMD-k/RMM-1 and RMD-k/RMM2.

Column 5, namely runtime, shows the execution
time for a single scalar multiplication (k.P ) obtained
by the production of corresponding required clock
cycles and the clock period. From this point of view,
a single scalar point multiplication is done in 0.35 up
to 0.74 milliseconds for different configurations. We
can see in Figure 4 that increasing of either k or ḱ
leads to reducing runtime. The maximum reduction,
about 55%, holds for RMD-3/RMM-3. Despite RMD-
3/RMM-4 requires fewer clock cycles, the resulting
runtime for RMD-3/RMM-3 is better than RMD-
3/RMM-4 due to its shorter clock time.

The preceding column shows the speed of operation,
i.e., the number of multiplications per second. It varies
from 1344 up to 2859 operations per second. Further,
we can see that operation speedup for RMD-1/RMM-
2 is equal to 26% without any significant increase in
the area. Moreover, the speedup reaches to max-value
of 120% for RMD-3/RMM-3 by accepting about 34%
increasing of the area.

The last column compares the different de-
signs based on the main optimization criteria, i.e.,
Time×Slice, which criteria considers both time and
area objectives. Further, Figure 5 shows the compari-
son of different designs based on this criterion. We see
that RMD-3/RMM-3 design reduces the Time×Area
by a factor of 55% to Liao design. Moreover, we can
see a repetitive pattern by fixing k in RMD-k, that is
the Time×Area objective is gradually reduced from
RMD-k/RMM-1 to RMD-k/RMM-3 while suddenly
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Figure 4. Comparison in Terms of Time Metric.

increased in RMD-k/RMM-4. Thus, the optimum
result for a specific k is obtained for RMD-k/RMM-3
design. This is due to the complexity of RMM-4 rel-
ative to RMM-3 in terms of enlarging multiplexers
(e.g., 111 different Q inputs relative to 33 ones) and
modular multiplication of x±4.

The above-mentioned experiments are repeated
for RMD2 − k/RMM2- ḱ designs. We can see that

increasing of either k or ḱ leads to increasing slices
and operation speed as well as reducing runtime and
Time×Slice objective relative to RMD2 − 1/RMM2-
1. For a better, we focus on the comparison of
each RMD2-k/RMM2- ḱ with corresponding RMD-

k/RMM- ḱ. First of all, we see that there is no
significant difference between the clock period for
RMD2 − k/RMM2- ḱ and RMD-k/RMM- ḱ since
replication does not have a direct effect on the critical
path.

Secondly, the number of slices is increased by a
factor of 40% to 70% relative to non-replicative design.
Despite the resource increasing, we can see an average
of 40% improvement in runtime due to fewer clock
cycles.

From the operation speed point of view, the num-
ber of scalar multiplications per second is increased
by a factor between 50% to 82%. Since the aver-
age gain of operation speedup (68%) is larger than
the average of resource increasing (50%), the replica-
tive design outperforms non-replicative ones regard-
ing the Time×Area objective. As we see in Table 5,
the improvement of design based on replication is
up to 20% over the corresponding non-replication
design. The maximum gain equals 20%, is obtained
by RMD2 − 2/RMM2-2 relative to RMD-2/RMM-
2. The gain resulted for the optimum design, i.e.,
RMD2 − 2/RMM2-3, is equal to 18% relative to
RMD-2/RMM-3 which is the best non-replicative de-
sign.

In summary, we can argue that increasing the par-
allelism factor over 3-bits does not lead to better

Figure 5. Comparison in Terms of Time×Slice Metric.

Time×Slice performance. This is happened due to the
logic complexity of k-bit multiplier and divider which
in its turn increased both the clock time and the num-
ber of slices. As mentioned above, the optimum perfor-
mance is derived by both RMD-2/RMM-3 and RMD-
3/RMM-3. As the latter requires fewer resources than
the former, we prefer RMD-2/RMM-3. Further, the
same thing is true for replicative design and we got
the best performance by RMD2 − 2/RMM2-3.

5.3 Evaluation Results on ASIC

Table 6. summarizes the synthesis results and makes
a comparison with the Liao coprocessor on corre-
sponding metrics. A different version of our proposed
ECC coprocessor was implemented by UMC 0.18-µm
CMOS technology. Moreover, to compare with known
previous works, we focused on a 163-bit version of
ECC coprocessor in GF(2163). The layout and syn-
thesis results along with the comparisons are given in
Table 5. The first column of the table indicates the
design and the preceding ones are respectively shown:

• the CMOS Technology used,
• the Field wherein implementation is done,
• the core area,
• the equivalent gates which is approximated by

dividing the design core area to the area of 2-
inputs NAND gate.

• the clock period in nano-seconds,
• the number of clock cycles for a scalar multipli-

cation acquired by formula (15),
• the runtime of one scalar multiplication in milli-

seconds,
• the normalized Area Time Product. First, com-

putation is done as ATP = Equivalent gates ×
(Time× λ), where λ is the technology ratio. Then,
the results are normalized to ATP obtained for
RMD-1/RMM-1.

Note that RMD-1/RMM-1 is our implementation of
Liao bit-serial ECC coprocessor which is slightly bet-
ter than the basic implementation reported in [11]. In
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Table 6. ASIC Comparison of Our ECC Coprocessor With Previous Well-Known Work.

DESIGN Tech. Field
Core
Area

(mm2)

Equivalent

Gates (k)

Clock
Period

(ns)

Clock

cycles

Runtime

(ms)

Normalized

ATP
security

RMD-
1/RMM-1

0.18 µ m GF(2163)

1.98 82.7 3.9 187,451 0.73 1

resistant

DPA

SPA and

RMD-

1/RMM-2
2.15 89.5 3.89 147,761 0.57 0.85

RMD-
2/RMM-2

2.31 96.5 6.29 94,463 0.59 0.94

RMD-

2/RMM-3
2.64 109.9 6.29 81,233 0.51 0.93

RMD2-

1/RMM2-
1

2.7 112.4 3.9 107,579 0.42 0.78

RMD2-

1/RMM2-
2

3.02 126.0 3.89 81,173 0.32 0.67

RMD2-

2/RMM2-

2

3.4 141.5 6.29 54,443 0.34 0.80

RMD2-2/
RMM2-3

4.04 168.3 6.29 45,641 0.29 0.81

Liao [11] 0.13 µm GF(2163) 0.28 57.4 4.25 187,451 0.80 1.05
Noninvasive

SCAs

resistant

Lee [15] 90 nm GF(2160) 0.21 61.3 3.61 168970 0.61 1.24
SPA and

CPA

resistant

Lee [16] 90 nm GF(2160) 0.55 170 5.32 216,200 1.15 6.48
SPA and

DPA
resistant

Jyu [17] 0.13 µm GF(2160) 1.44 169 6.85 54,319 0.37 1.43
SPA

resistant

terms of ATP, all of our coprocessor variants outper-
form other approaches. In contrast to FPGA designs,
we consider only four variants for non-replicative de-
signs (RMD-k/RMM-ḱ) as well as four versions of

replicative ones (RMD2-k/RMM2-ḱ). The optimum
result in terms of ATP is obtained by RMD-1/RMM-
2 with 19% for non-replicative designs. While, for
replicative design, the best gain is obtained byRMD2-
1/RMM2-2 with 36%, both relative to Liao coproces-
sor.

Other designs have less ATP performance. Although
the runtime is gradually reduced by increasing either
k or ḱ, the effect of increasing both clock period and
core area causes the overall ATP is not to decrease as
well. More specifically, for RMD-2/RMM-3, we can
see a 69% increase in clock time relative to RMD-
1/RMM-1 which bounds the runtime gain to 30%
and accordingly the overall ATP gain to only 7%.
The same thing happens for replicative designs. We

can observe about 69% of clock time increasing for
RMD2-2/RMM2-3 which cuts the runtime gain to
29% relative to RMD2 − 1/RMM2-1. Finally, the
overall ATP performance is 4% worse than RMD2-
1/RMM2-1 since the core area of RMD2-2/RMM2-3
shows about 50% growth (4.04 vs 2.7). The resulted

gain for larger k and ḱ such as RMD-3/RMM-3 is even
worse which prohibits us to bring them to the table.

In addition to the higher ATP performance results,
the major fact is the security margin of our coprocessor.
It is resistant to simple and differential power attacks,
i.e. the intruder is not capable of revealing the private
key by the methods such as TA attacks, SPA, DPA,
and CPA attacks.

6 Discussions and Conclusions

In this paper, a bit-parallel ECC coprocessor resistant
to differential power attacks was proposed. It acts
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in the binary field along with the operations done in
the randomized Montgomery domain which makes
it impossible to create differential power attacks by
involving a random number in the calculation process.
We proposed 2-bit and 3-bit randomized divider as well
as 2 to 4-bit randomized multiplier modules. Despite
the complexity of the logic in the multi-bit modules,
the speed was significantly improved by accepting
overhead in the area resource. We evaluated our design
variants both in FPGA and ASIC implementations.

In FPGA we got a better result than ASIC mainly
because the critical path in FPGA includes net delay
rather than logic delay in ASIC. However, ASIC eval-
uations in term of Time×Area metric showed a gain
of about 19% over the previous well-known work. A
version of our design with duplication improved the
overall gain up to 36%.

Further, the FPGA evaluations showed that the 2-
bit divider/3-bit multiplier version of our architecture
could lead to 40% improvement over the best previous
work in terms of the Time×Slice metric. Further, by
duplicating the divider and multiplier modules along
with the bit-parallel architecture this gain could reach
50%.
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