تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,775 |
تعداد مشاهده مقاله | 32,283,195 |
تعداد دریافت فایل اصل مقاله | 12,767,970 |
A note on groups with a finite number of pairwise permutable seminormal subgroups | ||
International Journal of Group Theory | ||
دوره 11، شماره 1، خرداد 2022، صفحه 1-6 اصل مقاله (193.52 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2021.119299.1575 | ||
نویسنده | ||
Alexander Trofimuk* | ||
Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Gomel, Belarus | ||
چکیده | ||
A subgroup $A$ of a group $G$ is called {\it seminormal} in $G$, if there exists a subgroup $B$ such that $G=AB$ and $AX$~is a subgroup of $G$ for every subgroup $X$ of $B$. The group $G = G_1 G_2 \cdots G_n$ with pairwise permutable subgroups $G_1,\ldots,G_n$ such that $G_i$ and $G_j$ are seminormal in~$G_iG_j$ for any $i, j\in \{1,\ldots,n\}$, $i\neq j$, is studied. In particular, we prove that if $G_i\in \frak F$ for all $i$, then $G^\frak F\leq (G^\prime)^\frak N$, where $\frak F$ is a saturated formation and $\frak U \subseteq \frak F$. Here $\frak N$ and $\frak U$~ are the formations of all nilpotent and supersoluble groups respectively, the $\mathfrak F$-residual $G^\frak F$ of $G$ is the intersection of all those normal subgroups $N$ of $G$ for which $G/N \in \mathfrak F$. | ||
کلیدواژهها | ||
finite group؛ residual؛ seminormal subgroups؛ product of subgroups؛ derived subgroup | ||
مراجع | ||
[1] B. Huppert, Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967.
[2] H. G. Bray and et al., Between Nilpotent and Soluble, Polygonal Publishing House, Passaic, 1982.
[3] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin, New York, 1992.
[4] A. Carocca, p-supersolvability of factorized finite groups, Hokkaido Math. J., 21 (1992) 395–403.
[5] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter GmbH & Co. KG, Berlin, 2010. [6] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken and M. C. Pedraza-Aguilera, A survey on pairwise mutually permutable products of finite groups, Algebra Discrete Math., 4 (2009) 1–9. [7] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken and M. C. Pedraza-Aguilera, On pairwise mutually permutable products, Forum Math., 21 (2009) 1081–1090. [8] A. Carocca, R. Maier, Theorems of Kegel-Wielandt type, Groups St. Andrews 1997 in Bath I, London Math. Soc. Lecture Note Ser, 260, Cambridge University Press, Cambridge, 1999 195–201. [9] X. Su, On semi-normal subgroups of finite group, J. Math. (Wuhan), 8 (1988) 7–9.
[10] A. Carocca and H. Matos, Some solvability criteria for finite groups, Hokkaido Math. J., 26 (1997) 157–161.
[11] V. S. Monakhov, Finite groups with a seminormal Hall subgroup, Math. Notes, 80 (2006) 542–549.
[12] V. N. Knyagina and V. S. Monakhov, Finite groups with seminormal Schmidt subgroups, Algebra and Logic, 46 (2007) 244–249. [13] V. S. Monakhov and A. A. Trofimuk, Finite groups with two supersoluble subgroups, J. Group Theory, 22 (2019) 297–312. [14] V. V. Podgornaya, Seminormal subgroups and supersolubility of finite groups, Vesti Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, 4 (2000) 22–25. [15] W. Guo, Finite groups with seminormal Sylow subgroups, Acta Mathematica Sinica, 24 (2008) 1751–1758.
[16] V. S. Monakhov and A. A. Trofimuk, On the supersolubility of a group with seminormal subgroups, Siberian Math. J., 61 (2020) 118–126. [17] A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Dordrecht, Springer, 2006.
[18] M. Asaad and A. Shaalan, On the supersolubility of finite groups, Arch. Math., 53 (1989) 318–326.
[19] V. S. Monakhov, On the supersoluble residual of mutually permutable products, PFMT, 34 (2018) 69–70. | ||
آمار تعداد مشاهده مقاله: 394 تعداد دریافت فایل اصل مقاله: 403 |