تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,327 |
تعداد مشاهده مقاله | 29,885,302 |
تعداد دریافت فایل اصل مقاله | 11,949,699 |
Some remarks on the sum of powers of the degrees of graphs | ||
Transactions on Combinatorics | ||
دوره 10، شماره 1، خرداد 2021، صفحه 63-71 اصل مقاله (233.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.122877.1726 | ||
نویسندگان | ||
Emina I. Milovanovic؛ Marjan Matejic؛ Igor Z. Milovanovic* | ||
Faculty of Electronic Engineering, University of Niˇ s, P.O.73, Niˇ s, Serbia | ||
چکیده | ||
Let $G=(V,E)$ be a simple graph with $n\ge 3$ vertices, $m$ edges and vertex degree sequence $\Delta=d_1 \ge d_2 \ge \cdots \ge d_n=\delta>0$. Denote by $S=\{1, 2,\ldots,n\}$ an index set and by $J=\{I=(r_1, r_2,\ldots,r_k), | ,1\le r_1<r_2<\cdots<r_k\le n\}$ a set of all subsets of $S$ of cardinality $k$, $1\le k\le n-1$. In addition, denote by $d_{I}=d_{r_1}+d_{r_2}+\cdots+d_{r_k}$, $1\le k\le n-1$, $1\le r_1<r_2<\cdots<r_k\le n-1$, the sum of $k$ arbitrary vertex degrees, where $\Delta_{I}=d_{1}+d_{2}+\cdots+d_{k}$ and $\delta_{I}=d_{n-k+1}+d_{n-k+2}+\cdots+d_{n}$. We consider the following graph invariant $S_{\alpha,k}(G)=\sum_{I\in J}d_I^{\alpha}$, where $\alpha$ is an arbitrary real number, and establish its bounds. A number of known bounds for various topological indices are obtained as special cases. | ||
کلیدواژهها | ||
Graphs؛ vertex degrees؛ graph invariants | ||
مراجع | ||
[1] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 80 (2018) 5–84. [2] S. M. Cioaba, Sum of powers of the degrees of a graph, Discr. Math., 306 (2006) 1959–1964.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math., 285 (2004) 57–66.
[4] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc., 9 (1977) 203–208.
[5] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer., 60 (1987) 187–197.
[6] G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011) 79–84. [7] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015) 1184–1190.
[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar- bons, Chem. Phys. Lett., 17 (1972) 535–538. [9] S. Hosamani and B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74 (2015) 97–101. [10] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth–order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425–434. [11] A. Ilić, M. Ilić and B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math., 35 (2011) 173–182.
[12] A. Ilić and B. Zhou, On reformulated Zagreb indices, Discr. Appl. Math., 160 (2012) 204–209.
[13] A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem., 62 (2009) 681–687. [14] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906) 175–193. [15] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005) 195–208. [16] J. Li, W. C. Shiu and A. Chang, On the Laplacian Estrada index of a graph, Appl. Anal. Discr. Math., 3 (2009) 147–156. [17] M. Liu and B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 62 (2009) 689–698. [18] A. Miličević and S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004) 97–101.
[19] E. I. Milovanović, I. Ž. Milovanović, E. Č, Dolićanin and E. Glogić, A note on the first reformulated Zagreb index, Appl. Math. Comput., 273 (2015) 16–20. [20] I. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević and E. I. Milovanović, On some spectral, vertex and edge degree– based graph invariants, MATCH Commun. Math. Comput. Chem., 77 (2017) 177–188. [21] P. Milošević, I. Milovanović, E. Milovanović and M. Matejić, Some inequalities for general zeroth-order Randić index, Filomat, 33 (2019) 5249–5258. [22] D. S. Mitrinović and P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
[23] J. Radon, Über die absolut additiven Mengenfunktionen, Sitzungsber, 122 (1913) 1295–1438.
[24] G. Tian, T. Huang and S. Cui, Bounds on the algebraic connectivity of graphs, Adv. Math., 41 (2012) 217–224. | ||
آمار تعداد مشاهده مقاله: 211 تعداد دریافت فایل اصل مقاله: 325 |