تعداد نشریات | 43 |
تعداد شمارهها | 1,650 |
تعداد مقالات | 13,402 |
تعداد مشاهده مقاله | 30,206,664 |
تعداد دریافت فایل اصل مقاله | 12,075,396 |
Some inequalities involving the distance signless Laplacian eigenvalues of graphs | ||
Transactions on Combinatorics | ||
دوره 10، شماره 1، خرداد 2021، صفحه 9-29 اصل مقاله (313.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.121940.1715 | ||
نویسندگان | ||
Abdollah Alhevaz1؛ Maryam Baghipur2؛ Shariefuddin Pirzada3؛ Yilun Shang* 4 | ||
1Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box: 316-3619995161, Shahrood, Iran | ||
2Department of Mathematics, University of Hormozgan, P. O. Box 3995, Bandar Abbas, Iran | ||
3Department of Mathematics, University of Kashmir, Srinagar, India | ||
4Department of Computer and Information Sciences, Northumbria University, Newcastle, UK | ||
چکیده | ||
Given a simple graph $G$, the distance signlesss Laplacian $D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix $Tr(G)$ and distance matrix $D(G)$. In this paper, thanks to the symmetry of $D^{Q}(G)$, we obtain novel sharp bounds on the distance signless Laplacian eigenvalues of $G$, and in particular the distance signless Laplacian spectral radius. The bounds are expressed through graph diameter, vertex covering number, edge covering number, clique number, independence number, domination number as well as extremal transmission degrees. The graphs achieving the corresponding bounds are delineated. In addition, we investigate the distance signless Laplacian spectrum induced by Indu-Bala product, Cartesian product as well as extended double cover graph. | ||
کلیدواژهها | ||
Distance signless Laplacian matrix؛ eigenvalue؛ transmission regular graph؛ spectral radius؛ graph operation | ||
مراجع | ||
[1] A. Alhevaz, M. Baghipur, H. A. Ganie and S. Pirzada, Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, Linear and Multilinear Algebra, (2019), https://doi.org/10.1080/03081087. 2019.1679074. [2] A. Alhevaz, M. Baghipur and E. Hashemi, Further results on the distance signless Laplacian spectrum of graphs, Asian-Eur. J. Math., 11 (2018) 15 pp. [3] A. Alhevaz, M. Baghipur, E. Hashemi and H. S. Ramane, On the distance signless Laplacian spectrum of graphs, Bull. Malays. Math. Sci. Soc., 42 (2019) 2603–2621. [4] A. Alhevaz, M. Baghipur and S. Paul, On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs, Discrete Math. Algorithms Appl., 10 (2018) 19 pp. [5] A. Alhevaz, M. Baghipur, S. Pirzada and Y. Shang, Some bounds on distance signless Laplacian energy-like invariant of graphs, submitted. [6] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl., 458 (2014) 301–386.
[7] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013) 21–33. [8] M. Aouchiche and P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear Algebra, 64 (2016) 1113–1123. [9] M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J., 64 (2014) 751–761. [10] M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat, 31 (2017) 2545–2555. [11] M. Aouchiche and P. Hansen, Cospectrality of graphs with respect to distance matrices, Appl. Math. Comput., 325 (2018) 309–321. [12] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986) 83–96.
[13] F. Atik and P. Panigrahi, Graphs with few distinct distance eigenvalues irrespective of the diameters, Electron. J. Linear Algebra, 29 (2015) 194–205. [14] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathe- matics, 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. [15] A. Brouwer and W. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
[16] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Theory and application, Pure and Applied Mathematics, 87, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York-London, 1980, 368 pp. [17] Z. Chen, Spectra of extended double cover graphs, Czechoslovak Math. J., 54 (2004) 1077–1082.
[18] J. B. Diaz and F. T. Metcalf, Complementary inequalities I: Inequalities complementary to Cauchy’s inequality for sums of real number, J. Math. Anal. Appl., (1964) 59–74. [19] P. J. Davis, Circulant matrices, A Wiley-Interscience Publication, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. [20] X. Duan and B. Zhou, Sharp bounds on the spectral radius of a non-negative matrix, Linear Algebra Appl., 439 (2013) 2961–2970. 21] E. Fritscher and V. Trevisan, Exploring symmetries to decompose matrices and graphs preserving the spectrum, SIAM J. Matrix Anal. Appl., 37 (2016) 260–289. [22] W. Hong and L. You, Some sharp bounds on the distance signless Laplacian spectral radius of graphs, (2013) 9 pp.
[23] G. Indulal and R. Balakrishnan, Distance spectrum of Indu-Bala product of graphs, AKCE Int. J. Graphs Comb., 13 (2016) 230–234. [24] G. Indulal, TDistance spectrum of graph compositions, Ars Math. Contemp., 2 (2009) 93–100.
[25] D. Li, G. Wang and J. Meng, On the distance signless Laplacian spectral radius of graphs and digraphs, Electron. J. Linear Algebra, 32 (2017) 438–446. [26] H. Minć, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, A Wiley- Interscience Publication, John Wiley & Sons, Inc., New York, 1988. [27] R. Xing, B. Zhou and J. Li, On the distance signless Laplacian spectral radius of graphs, Linear Multilinear Algebra, 62 (2014) 1377–1387. [28] R. Xing and B. Zhou, On the distance and distance signless Laplacian spectral radii of bicyclic graphs, Linear Algebra Appl., 439 (2013) 3955–3963. | ||
آمار تعداد مشاهده مقاله: 364 تعداد دریافت فایل اصل مقاله: 451 |