تعداد نشریات | 43 |
تعداد شمارهها | 1,651 |
تعداد مقالات | 13,405 |
تعداد مشاهده مقاله | 30,224,857 |
تعداد دریافت فایل اصل مقاله | 12,079,906 |
Parameters of the coprime graph of a group | ||
International Journal of Group Theory | ||
دوره 10، شماره 3، آذر 2021، صفحه 137-147 اصل مقاله (217.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2020.112121.1489 | ||
نویسندگان | ||
Jessie Hamm* ؛ Alan Way | ||
Department of Mathematics, Winthrop University, 142 Bancroft Hall Rock Hill, SC, USA | ||
چکیده | ||
There are many different graphs one can associate to a group. Some examples are the well-known Cayley graph, the zero divisor graph (of a ring), the power graph, and the recently introduced coprime graph of a group. The coprime graph of a group $G$, denoted $\Gamma_G$, is the graph whose vertices are the group elements with $g$ adjacent to $h$ if and only if $(o(g),o(h))=1$. In this paper we calculate the independence number of the coprime graph of the dihedral groups. Additionally, we characterize the groups whose coprime graph is perfect. | ||
کلیدواژهها | ||
Coprime graph؛ Finite groups؛ Independence number؛ Perfect graph | ||
مراجع | ||
[1] D. Anderson and Ph. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999) 434–447.
[2] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dover Publications, Inc., Mineola, NY, 2012.
[3] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2), 164 (2006) 51–229. [4] S. Curran and J. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs – a survey. Discrete Math., 156 (1996) 1–18. [5] H. Dorbidi, A note on the coprime graph of a group, Int. J. Group Theory, 5 (2016) 17–22.
[6] H. R. Dorbidi, Independent sets in the coprime graph of a group, 10th Graph Theory and Algebraic Combinatorics Conference of Iran, Yazd University, January, 2018 17–18. [7] J. Gallian, Contemporary Abstract Algbera, Sixth Edition, Houghton Mifflin Company, Boston, MA, 2006.
[8] X. Long Ma, H. Quan Wei and Li Ying Yang, The coprime graph of a group, Int. J. Group Theory, 3 (2014) 13–23.
[9] Sh. Rehman, A. Baig, M. Imran and Z. Khan, Order divisor graphs of finite groups, arXiv:1611.04280 [math.CO].
[10] K. Selvakumar and M. Subajini, Classification of Groups with Toroidal Coprime Graphs, Australas. J. Combin., 69 (2017) 174–183. | ||
آمار تعداد مشاهده مقاله: 363 تعداد دریافت فایل اصل مقاله: 555 |