تعداد نشریات | 42 |

تعداد شمارهها | 1,593 |

تعداد مقالات | 12,953 |

تعداد مشاهده مقاله | 28,252,046 |

تعداد دریافت فایل اصل مقاله | 11,281,870 |

## Multi-Criteria Analysis for the Use of Carbon Dioxide Generated In the Gas Plant | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Gas Processing Journal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

دوره 8، شماره 2، دی 2020، صفحه 1-12 اصل مقاله (665.46 K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

نوع مقاله: Research Article | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

شناسه دیجیتال (DOI): 10.22108/gpj.2020.111474.1033 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

نویسندگان | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Gholamreza Salehi^{*} ؛ Seyed Sajjad Jalali؛ Mohammad Sadegh Noroozieh؛ Mir Iraj Araghi
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

^{}Department of Mechanical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

چکیده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

CO_{2} plays the most important role in pollution due to greenhouse gases, which causes global warming and climate change. Unfortunately, CO_{2} emission has increased significantly in recent decades. So, it is crucial to capture CO_{2}. On the other hand, CO_{2} can be utilized for commercial products. There is plenty of CO_{2} utilization such as enhanced oil recovery (EOR), producing methanol, salicylic acid, urea, and so on. This paper tries to consider the applications of CO_{2} emitted from ethane treatment units of the Asalouyeh gas processing plant. But selecting the best application is a complex issue. A multi-criteria decision-making method, fuzzy TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), considering economic, technical, and environmental aspects have been used to find the best application for CO_{2} utilization. Considering 10 criteria and comparing options with sensitivity analysis in 32 different modes, the results show that methanol production is often the best option and salicylic acid production is the worst option. It should be noted that the increase in the harvest with a very close distance in the majority of cases is the second priority. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

کلیدواژهها | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Ethylene Epoxidation؛ Ethylene Oxide؛ Rhenium؛ Silver؛ Strontium Titanate | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

اصل مقاله | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Increasing the emissions of greenhouse gases is the consequence of anthropogenic activities over the past decades. CO To remove CO The difference between carbon capture and storage (CCS) and carbon capture and utilization (CCU) is in the final destination of the captured CO Carbon capture and storage (CCS) as mentioned above, is defined as the process of capturing CO Deveci et al. used fuzzy-based multi-criteria decision making (MCDM) methods that one may find the best CO
Although CCS can release CO Aresta et al. introduced several applications of using CO As mentioned above, it is possible to utilize CO
When there is more than one objective or criteria, multi-criteria decision making (MCDM) methods will be necessary. Usually; there are conflicting objectives. This means that the final decision depends on the decision-maker. Also, there is a certain uncertainty in the data set used by decision-makers. For a data set that is incomplete or uncertain, fuzzy-sets are recommended. Fuzzy-set theory that was introduced by Lotfi Zadeh 50 years ago allows approximate rezoning in such circumstances (Zadeh 1965). Fuzzy-set theory has been used in different fields since then. Fuzzy logic is useful for the representation of imprecise or uncertain information and also processing that information with fuzzy rules and tools (Kaufmann and Gupta 1991). In many life statuses that are real, frequently the decision that formulated by decision-maker are determined by vagueness. So numerical values cannot describe the performance that is accepted. The lingual variable has been suggested for this situation especially for the criteria that are not well determined and it is easier to determine it as qualitative variables intuitively. In other words, the fuzzy set theory is a useful tool for defining quantitative criteria (Cavallaro 2010; H.-J. Zimmermann 2011).
Multi-criteria decision making (MCDM) is a subset process research that has created a great revolution in Decision Science. Many methods for the MCDM problem have been expressed because of its great attractiveness. One of the most classic methods is the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) which represented for initially by Hwang and Yoon for solving MCDM problems (Tzeng and Huang 2011). The main aim of TOPSIS method is determining the (positive-ideal solution (PIS) which refers to the clarification that makes as maximum the advantage criteria and make as a minimum the disadvantage criteria and negative-ideal solution (NIS) which refers the solution that makes as maximum the disadvantage criteria and makes as a minimum the advantage criteria finally compute the distance from each alternative to PIS and NIS, the alternative that has the shortest distance from PIS and longest distance to FIS is the best selection. Fuzzy TOPSIS is similar just scales are used to change the lingual terms to fuzzy numbers. Recently there are a lot of applications of using Fuzzy TOPSIS as the method for solving the problem (Cavallaro 2010). The description of the method is expressed below in detail.
Suppose A In Equation (1) a classic fuzzy MCDM problem has been shown.
w The steps of fuzzy TOPSIS can be expresses as follows: (Cavallaro 2010). Step 1: determine alternatives. Step 2: Identify the appropriate criteria. Step 3: select the lingual variable. Step 4: Ascertain the weight of criteria. In this study, linear triangular fuzzy numbers are used that defined in the interval (0, 1) Lingual variables for the ratings and Lingual variables for the importance weight of each criterion has been shown in Table1 (Chen 2000).
Because the units of data are different and incomparable, the data should be normalized. In this study, a linear scale changeover is used to transform the scale of criteria into the scales that can be compared with each other. Step 5: Construct the fuzzy decision matrix. Step 6: Normalize the fuzzy decision matrix. For normalizing the fuzzy choice matrix Equation (3, 4) have been uses.
Where
Where, B and C in Equation (3, 4) are the sets of advantage criteria and cost criteria respectively. Advantage and cost criteria should be separated in order to be identified that what criteria should be maximized or minimized Step 7: construct a weighted normalized fuzzy choice matrix
Where w Step 8: calculate fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solutions (FNIS). FPIS refers to the solution that makes as maximum all the advantage criteria and make as a minimum all the disadvantage criteria and FNIS is the opposite, it means the solution that makes as maximum all the disadvantage criteria and makes as a minimum all the advantages criteria For calculating FPIS and FNIS the following equations are used:
Step 9: The distances between each alternative from FPIS and FNIS should be determined using Equation (12, 13):
Where, is the distance between each alternative from FPIS and is the distance between each alternative from FNIS. Step 10: calculate the closeness coefficient of the alternatives As the last step, the closeness coefficient (CC
Which alternative that has the highest CC In Fig 2 structure and steps of fuzzy TOPSIS has been shown.
Carbon Capture and Utilization (CCU) consists of two steps, the first step that is similar to CCS is the process of capturing CO Several industries such as the food or drink industry utilize CO CO Some of the most important conversions of CO2 that have been reported to date have been shown in Figure 3.
Iran has one of the world’s most massive natural gas reserves. Asalouyeh gas processing plant is the most colossal refinery in the south of Iran. This paper tries to consider the applications of CO
Alternatives can be compared with the criteria. It shows the importance of selecting criteria that should be accurate. Selecting criteria is the most important part of the work that any delinquency will eliminate the effort. The availability of data determines the number of criteria. The more criteria are considered, the more valid project’s result is. In this study, 10 criteria were adopted seven of them are technical and others are economic. C1: The internal mode of technology: It refers to how the internal mode of technology in the country is, whether it exists or not. C2: accessibility of the technology: This criterion represents how technology is possible to be accessed in the country or foreign countries. C3: mode of knowledge: it refers that the mode of the complexity of the technology. More complex technology makes the alternative less preferable. C4: Environmental aspect and safety. This criterion contemplates the risk to the environment for each of the alternatives. C5: transferring CO C6: purification of CO C7: the amount of CO C8: Investment costs. Investment costs relate to the cost of purchasing mechanical equipment, technology for installations, etc. which should be invested at the beginning of the project. This criterion is measured in million dollars per year. C9: Operating and maintenance costs. Operating and maintenance costs are related to, employees’ wages, transport, and other costs to keep the system in the best condition. This criterion is measured in million dollars per year. C10. Rate of return: Rate of return is a benefit on an investiture over a period of time, expressed as a proportion of the original investiture. In this study Discounted Cash Flow Rate of Return method has been used for calculating the rate of return for each alternative. In Figure 4. Structure of fuzzy TOPSIS for CO2 utilization is shown.
For all the alternatives, the technical, economic, and environmental criteria are shown in Table2. Table 2 shows the values extracted for the different options for each of the criteria. In this matrix, some cells have quantitative values and some cells have qualitative value, which will be quantitatively measured using fuzzy numbers. Most of the information that has been used in this study take over mostly from the IGCC reports, others adopted by experts in the relevant sector. Decision-maker designates a weight to the criteria by using the lingual variable. It expresses the importance of each criterion.
Then set the fuzzy choice matrix should be normalized then the normalized fuzzy choice matrix should be weighted. In Table 3 weighted fuzzy choice matrix is shown. The next step is calculating the distance of each alternative from FPIS and FNIS. Finally, by using equation (14) CC The level of uncertainty for criteria C1- C6 is higher than others because they are qualitative. Four criteria including Rate of return, Operating and maintenance costs, Investment costs, and amount of CO
After calculating CC
Considering the study conducted and obtaining the main priorities of the problem, then in order to investigate the sensitivity of the options to the weighting coefficients of the criteria, different modes are considered for each coefficient. each of the criteria weighting coefficients (Table 3) is considered in the three values of VL, M, VH compared to the original results (in total 30 modes for 10 criteria), an average condition with M taking into account the value of all weighting coefficients for All criteria, also one other case, is the same results as the main reference of all comparisons. A total of 32 modes have been created and reviewed. In this study, it has been shown that, despite varying coefficients and sensitivities, methanol production is the priority and salicylic acid production is the last priority (Fig 5). As can be seen from Figure 5, the choice of options does not have much sensitivity to changes in weight coefficients, carbon dioxide consumption criteria, costs, and rate of return, and has not changed the priority of the options or even the difference in their differences. By changing the weight coefficients, the mentioned criteria, the main priority remains the same.
This study considers the use of a fuzzy TOPSIS decision-making method to find the best application of CO Methanol production is always one of the best options because of its low sensitivity and very good conditions compared to other options. It should be noted that EOR has a second priority because of its high sensitivity to criteria, CO In this study, the conditions and criteria have been considered to be close to the existing reality, indicating that methanol production and harvesting should always be considered as one of the preferred options in the use of carbon dioxide in gas refinery units. also, This study shows that the MCDM method is a suitable method for finding the best application. For further investigation, more specific criteria, options, and conditions can be considered in the future, such as product demand status, product value-added, etc. It can also be checked for other similar gas units with different carbon dioxide conditions and levels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

مراجع | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Ahmadi, Mohammad Ali, Behzad Pouladi, and Tohid Barghi. 2016. “Numerical Modeling of CO _{2} Injection Scenarios in Petroleum Reservoirs: Application to CO_{2} Sequestration and EOR.” Journal of Natural Gas Science and Engineering 30: 38–49.
Aresta, Michele, Angela Dibenedetto, and Antonella Angelini. 2013. “The Changing Paradigm in CO _{2 }Utilization.” Journal of CO 3: 65–73.
_{2} UtilizationBarzagli, Francesco, Fabrizio Mani, and Maurizio Peruzzini. 2016. “Carbon Dioxide Uptake as Ammonia and Amine Carbamates and Their Efficient Conversion into Urea and 1, 3-Disubstituted Ureas.” Journal of CO 13: 81–89.
_{2} UtilizationCavallaro, Fausto. 2010. “Fuzzy TOPSIS Approach for Assessing Thermal-Energy Storage in Concentrated Solar Power (CSP) Systems.” Applied Energy 87 (2): 496–503.
Chen, Chen-Tung. 2000. “Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment.” Fuzzy Sets and Systems 114 (1): 1–9.
Cuéllar-Franca, Rosa M, and Adisa Azapagic. 2015. “Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts.” Journal of CO2 Utilization 9: 82–102.
Deveci, Muhammet, Nihan Çetin Demirel, Robert John, and Ender Özcan. 2015. “Fuzzy Multi-Criteria Decision Making for Carbon Dioxide Geological Storage in Turkey.” Journal of Natural Gas Science and Engineering 27: 692–705.
Eshraghi, S Ehsan, M Reza Rasaei, and Sohrab Zendehboudi. 2016. “Optimization of Miscible CO _{2} EOR and Storage Using Heuristic Methods Combined with Capacitance/ Resistance and Gentil Fractional Flow Models.” Journal of Natural Gas Science and Engineering 32: 304–18.
Ganesh, Ibram. 2014. “Conversion of Carbon Dioxide into Methanol–a Potential Liquid Fuel: Fundamental Challenges and Opportunities (a Review).” Renewable and Sustainable Energy Reviews 31: 221–57.
Gardarsdottir, Stefania Osk, Edoardo De Lena, Matteo Romano, Simon Roussanaly, Mari Voldsund, José-Francisco Pérez-Calvo, David Berstad, Chao Fu, Rahul Anantharaman, and Daniel Sutter. 2019. “Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis.” Energies 12 (3): 542.
Ghorbani, Bahram, Mehdi Mehrpooya, and Erfan Omid. 2020. “Hybrid Solar Liquefied Natural Gas, Post Combustion Carbon Dioxide Capture and Liquefaction.” Energy Conversion and Management 207: 112512.
Ghorbani, Bahram, Reza Shirmohammadi, Mehdi Mehrpooya, and Mohammad-Hossein Hamedi. 2018. “Structural, Operational and Economic Optimization of Cryogenic Natural Gas Plant Using NSGAII Two-Objective Genetic Algorithm.” Energy 159: 410–28.
Kaufmann, Arnold, and Madan M Gupta. 1991. “Introduction to Fuzzy Arithmetic: Theory and Applications. 1991.” VanNostrand Reinhold, New York.
McCoy, Sean. 2014. “Carbon Capture and Storage: Legal and Regulatory Review.” IEA, Paris.
Mehrpooya, Mehdi, and Bahram Ghorbani. 2018. “Introducing a Hybrid Oxy-Fuel Power Generation and Natural Gas/Carbon Dioxide Liquefaction Process with Thermodynamic and Economic Analysis.” Journal of Cleaner Production 204: 1016–33.
Miguel, Carlos V, Miguel A Soria, Adélio Mendes, and Luis M Madeira. 2015. “Direct CO _{2} Hydrogenation to Methane or Methanol from Post-Combustion Exhaust Streams–A Thermodynamic Study.” Journal of Natural Gas Science and Engineering 22: 1–8.
Olivier, Jos G I, Jeroen A H W Peters, and Greet Janssens-Maenhout. 2012. “Trends in Global CO _{2} Emissions 2012 Report.”
Patricio, Joao, Athanasios Angelis-Dimakis, Arturo Castillo-Castillo, Yuliya Kalmykova, and Leonardo Rosado. 2017. “Region Prioritization for the Development of Carbon Capture and Utilization Technologies.” Journal of CO 17: 50–59.
_{2} UtilizationRubin, Edward S, John E Davison, and Howard J Herzog. 2015. “The Cost of CO _{2} Capture and Storage.” International Journal of Greenhouse Gas Control 40: 378–400.
Shirmohammadi, Reza, Mohammad Soltanieh, and Luis M Romeo. 2018. “Thermoeconomic Analysis and Optimization of Post‐combustion CO _{2} Recovery Unit Utilizing Absorption Refrigeration System for a Natural‐gas‐fired Power Plant.” Environmental Progress & Sustainable Energy 37 (3): 1075–84.
Styring, Peter, Elsje Alessandra Quadrelli, and Katy Armstrong. 2014. Carbon Dioxide Utilisation: Closing the Carbon Cycle. Elsevier.
Tzeng, Gwo-Hshiung, and Jih-Jeng Huang. 2011. Multiple Attribute Decision Making: Methods and Applications. CRC press.
Voldsund, Mari, Stefania Osk Gardarsdottir, Edoardo De Lena, José-Francisco Pérez-Calvo, Armin Jamali, David Berstad, Chao Fu, Matteo Romano, Simon Roussanaly, and Rahul Anantharaman. 2019. “Comparison of Technologies for CO _{2} Capture from Cement Production—Part 1: Technical Evaluation.” Energies 12 (3): 559.
Zadeh, Lotfi A. 1965. “Fuzzy Sets.” Information and Control 8 (3): 338–53.
Zimmermann, Arno W, Johannes Wunderlich, Leonard Müller, Georg A Buchner, Annika Marxen, Stavros Michailos, Katy Armstrong, Henriette Naims, Stephen McCord, and Peter Styring. 2020. “Techno-Economic Assessment Guidelines for CO _{2} Utilization.” Frontiers in Energy Research 8.
Zimmermann, Hans-Jürgen. 2011. Fuzzy Set Theory—and Its Applications. Springer Science & Business Media. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

آمار تعداد مشاهده مقاله: 343 تعداد دریافت فایل اصل مقاله: 184 |