تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,327 |
تعداد مشاهده مقاله | 29,885,122 |
تعداد دریافت فایل اصل مقاله | 11,949,657 |
Determinant identities for Toeplitz-Hessenberg matrices with tribonacci entries | ||
Transactions on Combinatorics | ||
مقاله 24، دوره 9، شماره 2، شهریور 2020، صفحه 89-109 اصل مقاله (302.92 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.116257.1631 | ||
نویسندگان | ||
Taras Goy1؛ Mark Shattuck* 2 | ||
1Faculty of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian National University, 76018, Ivano-Frankivsk, Ukraine | ||
2Department of Mathematics University of Tennessee Knoxville, TN, 37996-1300 | ||
چکیده | ||
In this paper, we evaluate determinants of some families of Toeplitz--Hessenberg matrices having tribonacci number entries. These determinant formulas may also be expressed equivalently as identities that involve sums of products of multinomial coefficients and tribonacci numbers. In particular, we establish a connection between the tribonacci and the Fibonacci and Padovan sequences via Toeplitz--Hessenberg determinants. We then obtain, by combinatorial arguments, extensions of our determinant formulas in terms of generalized tribonacci sequences satisfying a recurrence of the form $T_n^{(r)}=T_{n-1}^{(r)}+T_{n-2}^{(r)}+T_{n-r}^{(r)}$ for $n \geq r$, with the appropriate initial conditions, where $r \geq 3$ is arbitrary. | ||
کلیدواژهها | ||
tribonacci numbers؛ Toeplitz-Hessenberg matrix؛ determinant؛ multinomial coefficient | ||
مراجع | ||
[1] M. Agronomof, Sur une suite récurrente, Mathesis, 4 (1914) 125–126.
[2] P. Anantakitpaisal and K. Kuhapatanakul, Reciprocal sums of the tribonacci numbers, J. Integer Seq., 19 (2016) pp. 9. [3] P. Barry, On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Seq., 1 (2006) pp. 34.
[4] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Associ- ation of America, Washington, DC, 2003. [5] J. L. Cereceda, Determinantal representations for generalized Fibonacci and tribonacci numbers, Internat. J. Con- temp. Math. Sci., 9 (2014) 269–285. [6] E. Choi, Modular tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 20 (2013) 207–221. [7] E. Choi and J. Jo, Identities involving tribonacci numbers, J. Chungcheong Math. Soc., 28 (2015) 39–51.
[8] G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq., 17 (2014) pp. 9. [9] M. Feinberg, Fibonacci-Tribonacci, Fibonacci Quart., 1 (1963) 71–74.
[10] J. Feng, Hessenberg matrices on Fibonacci and Tribonacci numbers, Ars Combin., 127 (2011) 117–124.
[11] T. Goy, Some tribonacci identities using Toeplitz-Hessenberg determinants, Proc. 18th Int. Scientific M. Kravchuk Conf., 1 (2017) 159–161. [12] T. Goy and M. Shattuck, Determinant formulas of some Toeplitz-Hessenberg matrices with Catalan entries, Proc. Indian Acad. Sci. Math. Sci., 129 (2019) pp. 17. [13] T. Goy and M. Shattuck, Fibonacci and Lucas identities from Toeplitz-Hessenberg matrices, Appl. Appl. Math., 14 (2019) 699–715. [14] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Math. Notes, 14 (2013) 125–133. [15] E. Kiliç, Tribonacci sequences with certain indices and their sums, Ars Combin., 86 (2008) 13–22.
[16] K. Kuhapatanakul and L. Sukruan, The generalized Tribonacci numbers with negative subscripts, Integers, 14 (2014) pp. 6. [17] M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix, Special Matrices, 1 (2013) 10–16.
[18] T. Muir, The Theory of Determinants in the Historical Order of Development, 3, Dover Publications, New York, 1960. [19] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2010. [20] N. Yilmaz and N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci., 8 (2014) 1947–1955. [21] R. Zatorsky and T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, J. Integer Seq., 19 (2016) pp. 23. | ||
آمار تعداد مشاهده مقاله: 480 تعداد دریافت فایل اصل مقاله: 308 |