تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,754 |
تعداد مشاهده مقاله | 32,147,599 |
تعداد دریافت فایل اصل مقاله | 12,727,616 |
A generalization of Hall's theorem for $k$-uniform $k$-partite hypergraphs | ||
Transactions on Combinatorics | ||
مقاله 12، دوره 8، شماره 3، آذر 2019، صفحه 25-30 اصل مقاله (426.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2019.105022.1506 | ||
نویسنده | ||
Reza Jafarpour-Golzari* | ||
Department of Mathematics, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, Iran | ||
چکیده | ||
In this paper we prove a generalized version of Hall's theorem in graphs, for hypergraphs. More precisely, let $\mathcal{H}$ be a $k$-uniform $k$-partite hypergraph with some ordering on parts as $V_{1}, V_{2},\ldots,V_{k}$ such that the subhypergraph generated on $\bigcup_{i=1}^{k-1}V_{i}$ has a unique perfect matching. In this case, we give a necessary and sufficient condition for having a matching of size $t=|V_{1}|$ in $\mathcal{H}$. Some relevant results and counterexamples are given as well. | ||
کلیدواژهها | ||
$k$-uniform $k$-partite hypergraph؛ matching؛ perfect matching؛ vertex cover؛ Hall's theorem | ||
آمار تعداد مشاهده مقاله: 363 تعداد دریافت فایل اصل مقاله: 510 |