تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,762 |
تعداد مشاهده مقاله | 32,189,585 |
تعداد دریافت فایل اصل مقاله | 12,743,734 |
Catalan fragile words | ||
International Journal of Group Theory | ||
مقاله 2، دوره 9، شماره 2، شهریور 2020، صفحه 69-80 اصل مقاله (208.41 K) | ||
نوع مقاله: Ischia Group Theory 2018 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2019.113180.1506 | ||
نویسندگان | ||
Daniele D'Angeli1؛ Alfredo Donno* 2؛ Emanuele Rodaro3 | ||
1TUGraz | ||
2Università degli Studi Niccolò Cusano Dipartimento di Ingegneria Via Don Carlo Gnocchi, 3 00166 Roma, Italy | ||
3Dipartimento di Matematica, Politecnico di Milano, Milano, Italia | ||
چکیده | ||
Fragile words have been already considered in the context of automata groups. Here we focus our attention on a special class of strongly fragile words that we call Catalan fragile words. Among other properties, we show that there exists a one-to-one correspondence between the set of Catalan fragile words and the set of full binary trees. | ||
کلیدواژهها | ||
Automata group؛ Catalan number؛ Fragile word؛ Full binary tree | ||
مراجع | ||
[1] S. V. Al¨eshin, A free group of finite automata, Mosc. Univ. Math. Bull., 38 (1983) 10–13.
[2] B. Bollob´as, Modern graph theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, 1998.
[3] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, Trends Math., Birkh¨auser Basel, (2003) 25–118. [4] D. D’Angeli and E. Rodaro, Fragile words and Cayley type transducers, Int. J. Group Theory, 7 no. 3 (2018) 91–109. [5] S. Eilenberg, Automata, Languages and Machines, A, Pure and Applied Mathematics, 58, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. [6] R. Grigorchuk, V. Nekrashevych and V. Sushchanskii, Automata, dynamical systems and infinite groups, Proc. Steklov Inst. Math., 231 (2000) 134–214. [7] R. Grigorchuk, Some topics of dynamics of group actions on rooted trees, Proc. Steklov Inst. Math., 273 (2011) 64–175. [8] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.
[9] S. Roman, An introduction to Catalan numbers, Compact textbooks in Mathematics, Birkhauser, Basel, 2005.
[10] B. Steinberg, M. Vorobets and Y. Vorobets, Automata over a binary alphabet generating free groups of even rank, Int. J. Algebra Comput., 21 (2011) 329–354. [11] M. Vorobets and Y. Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007) 237–249. [12] M. Vorobets and Y. Vorobets, On a series of finite automata defining free transformation groups, Groups Geom. Dyn., 4 (2010) 377–405. | ||
آمار تعداد مشاهده مقاله: 742 تعداد دریافت فایل اصل مقاله: 600 |