تعداد نشریات | 43 |
تعداد شمارهها | 1,646 |
تعداد مقالات | 13,379 |
تعداد مشاهده مقاله | 30,114,666 |
تعداد دریافت فایل اصل مقاله | 12,062,120 |
A note on some lower bounds of the Laplacian energy of a graph | ||
Transactions on Combinatorics | ||
مقاله 2، دوره 8، شماره 2، شهریور 2019، صفحه 13-19 اصل مقاله (220.94 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2019.115269.1616 | ||
نویسندگان | ||
Igor Z. Milovanovic1؛ M. Matejic2؛ P. Milosevic2؛ Emina I. Milovanovic1؛ Akbar Ali* 3 | ||
1Faculty of Electronic Engineering | ||
2University of Nis, Serbia | ||
3University of Management and Technology, Sialkot, Pakistan | ||
چکیده | ||
For a simple connected graph $G$ of order $n$ and size $m$, the Laplacian energy of $G$ is defined as $LE(G)=\sum_{i=1}^n|\mu_i-\frac{2m}{n}|$ where $\mu_1, \mu_2,\ldots,\mu_{n-1}, \mu_{n}$ are the Laplacian eigenvalues of $G$ satisfying $\mu_1\ge \mu_2\ge\cdots \ge \mu_{n-1}> \mu_{n}=0$. In this note, some new lower bounds on the graph invariant $LE(G)$ are derived. The obtained results are compared with some already known lower bounds of $LE(G)$. | ||
کلیدواژهها | ||
Laplacian eigenvalue؛ Laplacian energy (of a graph)؛ first Zagreb index | ||
آمار تعداد مشاهده مقاله: 579 تعداد دریافت فایل اصل مقاله: 524 |