تعداد نشریات | 43 |
تعداد شمارهها | 1,640 |
تعداد مقالات | 13,343 |
تعداد مشاهده مقاله | 29,979,532 |
تعداد دریافت فایل اصل مقاله | 12,001,259 |
Groups with many self-centralizing or self-normalizing subgroups | ||
International Journal of Group Theory | ||
مقاله 6، دوره 9، شماره 1، خرداد 2020، صفحه 43-57 اصل مقاله (226.19 K) | ||
نوع مقاله: Ischia Group Theory 2018 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2019.114315.1518 | ||
نویسندگان | ||
Costantino Delizia* ؛ Chiara Nicotera | ||
Department of Mathematics, University of Salerno, Italy | ||
چکیده | ||
The purpose of this paper is to present a comprehensive overview of known and new results concerning the structure of groups in which all subgroups, except those having a given property, are either self-centralizing or self-normalizing. | ||
کلیدواژهها | ||
Self-centralizing subgroup؛ self-normalizing subgroup | ||
مراجع | ||
[1] Y. Berkovich, Groups of prime power order, 1, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
[2] C. Casolo, Groups with all subgroups subnormal, Note Mat., 28 (2008) 1–149.
[3] M. De Falco and C. Musella, A normalizer condition for modular subgroups, Advances in Group Theory, Aracne, Roma, 2002 163–172. [4] M. De Falco, F. de Giovanni and C. Musella, Groups with many self-normalizing subgroups, Algebra Discrete Math., 4 (2009) 55–65. [5] C. Delizia, U. Jezernik, P. Moravec and C. Nicotera, Groups in which every non-cyclic subgroup contains its centralizer, J. Algebra Appl., 13 (2014) pp. 11. [6] C. Delizia, H. Dietrich, P. Moravec and C. Nicotera, Groups in which every non-abelian subgroup is self-centralizing, J. Algebra, 462 (2016) 23–36. [7] C. Delizia, U. Jezernik, P. Moravec, C. Nicotera and C. Parker, Locally finite groups in which every non-cyclic subgroup is self-centralizing, J. Pure Appl. Algebra, 221 (2017) 401–410. [8] C. Delizia, U. Jezernik, P. Moravec and C. Nicotera, Groups in which every non-abelian subgroup is self-normalizing, Monatsh. Math., 185 (2018) 591–600. [9] C. Delizia, U. Jezernik, P. Moravec and C. Nicotera, Groups in which every non-nilpotent subgroup is selfnormalizing, Ars Math. Contemp., 15 (2018) 39–51.
[10] G. Giordano, Gruppi con normalizzatori estremali, Matematiche (Catania), 26 291–296 (1972).
[11] M. Hassanzadeh and Z. Mostaghim, Groups with few self-centralizing subgroups which are not self-normalizing, Rend. Sem. Mat. Univ. Padova, in press. [12] L. A. Kurdachenko and H. Smith, Groups with all subgroups either subnormal or self-normalizing, J. Pure Appl. Algebra, 196 (2005) 271–278. [13] L. A. Kurdachenko, J. Otal, A. Russo and G. Vincenzi, Groups whose all subgroups are ascendant or self-normalizing, Cent. Eur. J. Math., 9 (2011) 420–432. [14] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 2nd edition, 1996.
[15] R. Schmidt, Subgroup lattices of groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 2014.
[16] S. E. Stonehever, Permutable subgroups of infinite groups, Math. Z., 125 (1972) 1–16. | ||
آمار تعداد مشاهده مقاله: 472 تعداد دریافت فایل اصل مقاله: 563 |