تعداد نشریات | 43 |
تعداد شمارهها | 1,640 |
تعداد مقالات | 13,343 |
تعداد مشاهده مقاله | 29,979,305 |
تعداد دریافت فایل اصل مقاله | 12,001,049 |
The number of maximal subgroups and probabilistic generation of finite groups | ||
International Journal of Group Theory | ||
مقاله 5، دوره 9، شماره 1، خرداد 2020، صفحه 31-42 اصل مقاله (218.11 K) | ||
نوع مقاله: Ischia Group Theory 2018 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2019.114469.1521 | ||
نویسندگان | ||
Adolfo Ballester Bolinches1؛ Ramón Esteban-Romero* 1؛ Paz Jiménez-Seral2؛ Hangyang Meng1 | ||
1Departament de Matematiques, Universitat de Valencia, Spain | ||
2Departamento de Matematicas, Universidad de Zaragoza, Pedro Cerbuna, Spain | ||
چکیده | ||
In this survey we present some significant bounds for the number of maximal subgroups of a given index of a finite group. As a consequence, new bounds for the number of random generators needed to generate a finite $d$-generated group with high probability which are significantly tighter than the ones obtained in the paper of Jaikin-Zapirain and Pyber (Random generation of finite and profinite groups and group enumeration, \emph{Ann.\ Math.}, \textbf{183} (2011) 769--814) are obtained. The results of Jaikin-Zapirain and Pyber, as well as other results of Lubotzky, Detomi, and Lucchini, appear as particular cases of our theorems. | ||
کلیدواژهها | ||
Finite group؛ maximal subgroup؛ probabilistic generation؛ primitive group | ||
مراجع | ||
[1] R. Baer, Classes of finite groups and their properties, Illinois J. Math., 1 (1957) 115–187.
[2] A. Ballester-Bolinches, R. Esteban-Romero, P. Jim´enez-Seral and H. Meng, Bounds on the number of maximal subgroups with applications to random generation of finite groups, Preprint. [3] A. Ballester-Bolinches and L. M. Ezquerro, Classes of finite groups, Mathematics and Its Applications, Springer, Dordrecht, 584 (2006). [4] A. V. Borovik, L. Pyber and A. Shalev, Maximal subgroups in finite and profinite groups, Trans. Amer. Math. Soc., 348 (1996) 3745–3761. [5] T. C. Burness, M. W. Liebeck and A. Shalev, Generation and random generation: From simple groups to maximal subgroups, Adv. Math., 248 (2013) 59–95. [6] F. Dalla Volta and A. Lucchini, Finite groups that need more generators than any proper quotient, J. Austral. Math. Soc. Ser. A, 64 (1998) 82–91. [7] F. Dalla Volta, A. Lucchini and F. Morini, On the probability of generating a minimal d-generated group, J. Aust. Math. Soc., 71 (2001) 177–185. [8] E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra, 265 (2003) 651–668. [9] E. Detomi and A. Lucchini, Crowns in profinite groups and applications, Noncommutative Algebra and Geometry, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, 243 (2006) 47–62. [10] J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969) 199–205.
[11] W. Gasch¨utz, Die Eulersche Funktion endlicher aufl¨osbarer Gruppen, Illinois J. Math., 3 (1959) 469–476.
[12] A. Jaikin-Zapirain and L. Pyber, Random generation of finite and profinite groups and group enumeration, Ann. Math., 173 (2011) 769–814. [13] , Random generation of finite and profinite groups and group enumeration, http://verso.mat.uam.es/ ~andrei.jaikin/preprints/pfg.pdf, 2017, Visited 20th February, 2017. [14] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Dedicata, 36 (1990) 67–87. [15] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group, Geom. Dedicata, 56 (1995) 103–113. [16] A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra, 257 (2002) 452–459.
[17] A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups, Israel J. Math., 96 (1996) 449–468. [18] E. Netto, The theory of substitutions and its applications to algebra, Second edition. Revised by the author and translated with his permission by F. N. Cole Chelsea Publishing Co., New York, 1964. [19] I. Pak, On probability of generating a finite group, Preprint, http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.43.7319. [20] C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar., 43 (2001) 191–198. [21] L. Pyber, The number of maximal core-free subgroups of a finite group, In preparation.
[22] J. Wiegold, Growth sequences of finite groups IV, J. Austral. Math. Soc. (Ser. A), 29 (1980) 14–16. | ||
آمار تعداد مشاهده مقاله: 516 تعداد دریافت فایل اصل مقاله: 323 |