[1] A. A. Albert, Structure of algebras, Revised printing, American Mathematical Society Colloquium Publications, XXIV, Amer-ican Mathematical Society, Providence, R.I. 1961.
[2] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957.
[3] E. Bayer-Fluckiger, D. B. Shapiro and J.-P. Tignol, Hyperbolic involutions, Math. Z., 214 (1993) 461–476.
[4] E. Bayer-Fluckiger, R. Parimala and A. Quéguiner-Mathieu, Pfister involutions, Proc. Indian Acad. Sci. Math. Sci., 113 (2003)
365–377.
[5] K. J. Becher, A proof of the Pfister factor conjecture, Invent. Math., 173 (2008) 1–6.
[6] G. Berhuy, C. Frings and J.-P. Tignol, Galois cohomology of the classical groups over imperfect fields, J. Pure Appl. Algebra,
211 (2007) 307–341.
[7] J. Black and A. Quéguiner-Mathieu, Involutions, odd degree extensions and generic splitting, Enseign. Math., 60 (2014)
377–395.
[8] R. Brauer, Untersuchungen uber die arithmetischen Eigenschaften von Gruppen linearer Substitutionen, (German), Math. Z.,
28 (1928) 677–696.
[9] E. Cartan, Les groupes bilinéaires et les systémes de nombres complexes, (French), Ann. Fac. Sci. Toulouse Sci. Math. Sci.
Phys., 12 (1898) B65–B99.
[10] L. E. Dickson, Determination of the structure of all linear homogeneous groups in a Galois field which are defined by a
quadratic invariant, Amer. J. Math., 21 (1899) 193–256.
[11] L. E. Dickson, History of the theory of numbers, II: Diophantine analysis, Chelsea Publishing Co., New York 1966.
[12] A. Dolphin, Orthogonal Pfister involutions in characteristic two, J. Pure Appl. Algebra, 218 (2014) 1900–1915.
[13] A. Dolphin, Metabolic involutions, J. Algebra, 336 (2011) 286–300.
[14] P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, 81, Cambridge University Press, Cambridge,
1983.
[15] A. Elduque, Composition of quadratic forms and the Hurwitz-Radon function in characteristic 2, Linear Algebra Appl., 348
(2002) 87–103.
[16] R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical
Society Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008.
[17] S. Garibaldi, R. Parimala and J.-P. Tignol, Discriminant of symplectic involutions, Pure Appl. Math. Q., 5 (2009) 349–374.
[18] L. J. Gerstein, Basic quadratic forms, Graduate Studies in Mathematics, 90, American Mathematical Society, Providence, RI,
2008.
[19] N. Grenier-Boley, E. Lequeu and M. G. Mahmoudi, On Hermitian Pfister forms, J. Algebra Appl. 7 (2008) 629–645.
[20] K. Ireland and M. Rosen, A classical introduction to modern number theory, Second edition, Graduate Texts in Mathematics,
84, Springer-Verlag, New York, 1990.
[21] J. Junker, Das Hurwitz Problem für quadratische Formen über Körper der Charakteristik 2, Diplom thesis, Univ. Saarbrücken,
1980.
[22] N. Karpenko, Hyperbolicity of orthogonal involutions, With an appendix by Jean-Pierre Tignol, Doc. Math., Extra volume:
Andrei A. Suslin sixtieth birthday, (2010) 371–392.
[23] M. Knebusch, Grothendieck-und Wittringe von nichtausgearteten symmetrischen Bilinearformen, (German), S.-B. Heidel-berger Akad. Wiss. Math.-Natur., (1969/1970) 93–157.
[24] M.-A. Knus, A. S. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium
Publications, 44, American Mathematical Society, Providence, RI, 1998.
[25] A. Laghribi, Witt kernels of function field extensions in characteristic ۲ , J. Pure Appl. Algebra, 199 (2005) 167–182.
[26] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society,
Providence, RI, 2005.
[27] E. Landau, Vorlesungen über Zahlentheorie. Erster Band, zweiter Teil; zweiter Band; dritter Band, (German), Chelsea Pub-lishing Co., New York, 1969.
[28] M. G. Mahmoudi and A.-H. Nokhodkar, On split products of quaternion algebras with involution in characteristic two, J. Pure
Appl. Algebra, 218 (2014) 731–734.
[29] H. Minkowski, Grundlagen für eine Theorie der quadratischen Formen mit ganzzahligen Koeffizienten,Mémoires présentés
par divers savants a l’Academie des Sciences de l’institut national de France, Tome XXIX 1884.
[30] H. Minkowski, Ueber die Bedingungen, unter welchen zwei quadratische Formen mit rationalen Coefficienten in einander
rational transformirt werden können, (German), J. Reine Angew. Math., 106 (1890) 5–26.
[31] T. Molien, Ueber Systeme höherer complexer Zahlen, (German), Math. Ann., 41 (1892) 83–156.
[32] A.-H. Nokhodkar, Pfister involutions in characteristic two, Bull. London Math. Soc., 49 (2017) 505–511.
[33] A. Pfister, Multiplikative quadratische Formen, (German), Arch. Math., 16 (1965) 363–370.
[34] A. Pfister, Quadratische Formen in beliebigen Körpern, (German), Invent. Math., 1 (1966) 116–132.
[35] C. Riehm, The corestriction of algebraic structures, Invent. Math., 11 (1970) 73–98.
[36] W. Scharlau, Zur Existenz von Involutionen auf einfachen Algebren, (German), Math. Z., 145 (1975) 29–32.
[37] W. Scharlau, On the history of the algebraic theory of quadratic forms, Quadratic forms and their applications, 229–259,
Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000.
[38] A. Serhir and J.-P. Tignol, The discriminant of a decomposable symplectic involution, J. Algebra, 273 (2004) 601–607.
[39] D. B. Shapiro, Compositions of quadratic forms, de Gruyter Expositions in Mathematics, 33, Walter de Gruyter & Co., Berlin,
2000.
[40] A. S. Sivatski, Applications of Clifford algebras to involutions and quadratic forms, Comm. Algebra, 33 (2005) 937–951.
[41] A. R. Wadsworth, D. B. Shapiro, Spaces of similarities. III. Function fields, J. Algebra, 46 (1977) 182–188.
[42] E. Witt, Theorie der quadratischen Formen in beliebigen Körpen, (German), J. Reine Angew. Math., 176 31–44.
[43] S. Yuzvinsky, Composition of quadratic forms and tensor product of quaternion algebras, J. Algebra, 96 (1985) 347–367.