
تعداد نشریات | 43 |
تعداد شمارهها | 1,706 |
تعداد مقالات | 13,972 |
تعداد مشاهده مقاله | 33,573,521 |
تعداد دریافت فایل اصل مقاله | 13,311,757 |
Further rigid triples of classes in $G_{2}$ | ||
International Journal of Group Theory | ||
مقاله 22، دوره 8، شماره 4، اسفند 2019، صفحه 5-9 اصل مقاله (188.38 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2018.111467.1481 | ||
نویسندگان | ||
Matthew Conder1؛ Alastair Litterick* 2 | ||
1University of Cambridge | ||
2Bielefeld University, and Ruhr-University Bochum | ||
چکیده | ||
We establish the existence of two rigid triples of conjugacy classes in the algebraic group G2 in characteristic 5, complementing results of the second author with Liebeck and Marion. As a corollary, the finite groups G2(5^n) are not (2,4,5)-generated, confirming a conjecture of Marion in this case. | ||
کلیدواژهها | ||
triangle groups؛ finite groups of Lie type؛ representation varieties | ||
مراجع | ||
[1] B. Chang and R. Ree, The characters of G 2 ( q ), Symp osia Mathematica, XI I I (Convegno di Gruppi e loro Rappre- sentazioni, INDAM, Rome,1972), Academic Press, London, 1974, 395{413. [2] M. Dettweiler and S. Reiter, On rigid tuples in linear groups of o dd dimension, J. Algebra , 222 (1999) 550{560. [3] W. Feit and P. Fong, Rational rigidity of G 2 ( p ) for any prime p > 5, Pro ceedings of the Rutgers group theory year, 1983{1984 (New Brunswick, N.J., 19831984), Cambridge Univ. Press, Cambridge, 1985, 323{326. [4] M. Geck, G. Hiss, F. L ub eck, G. Malle and Gotz Pfeiffer, CHEVIE|a system for computing and pro cessing generic character tables, Appl. Algebra Engrg. Comm. Comput. , 7 (1996) 175{210. [5] R. Guralnick and G. Malle, Rational rigidity for E 8 ( p ), Compos. Math. , 150 (2014) 1679{1702. [6] S. Jamb or, A. Litterick and C. Marion, On finite simple images of triangle groups , To app ear in Israel Journal of Mathematics. [7] N. M. Katz, Rigid local systems , Annals of Mathematics Studies, 139 , Princeton University Press, Princeton, NJ, 1996. [8] R. Lawther, Jordan blo ck sizes of unip otent elements in exceptional algebraic groups, Comm. Algebra , 23 (1995) 4125{4156. [9] Martin W. Lieb eck, Alastair J. Litterick and Claude Marion, A rigid triple of conjugacy classes in G 2 , J. Group Theory , 14 (2011) 31{35. [10] M. W. Lieb eck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. , 121 (1996) vi+111. [11] , Unipotent and nilpotent classes in simple algebraic groups and Lie algebras , Mathematical Surveys and Monographs, 180 , American Mathematical So ciety, Providence, RI, 2012. [12] G. Malle and B. Heinrich Matzat, Inverse Galois theory , Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. [13] G. Malle and D. Testerman, Linear algebraic groups and nite groups of Lie type , Cambridge Studies in Advanced Mathematics, 133 , Cambridge University Press, Cambridge, 2011. [14] C. Marion, On triangle generation of nite groups of Lie typ e, J. Group Theory , 13 (2010) 619{648. [15] L. L. Scott, Matrices and cohomology, Ann. of Math. (2) , 105 (1977) 473{492. [16] K. Strambach and H. Volklein, On linearly rigid tuples, J. Reine Angew. Math. , 510 (1999) 57{62. [17] J. G. Thompson, Rational rigidity of G 2 (5), Pro ceedings of the Rutgers group theory year, 1983{1984 (New Brunswick, N.J., 1983{1984), Cambridge Univ. Press, Cambridge, 1985, 321{322. [18] Helmut Volklein, Rigid generators of classical groups, Math. Ann. , 311 (1998) 421{438. | ||
آمار تعداد مشاهده مقاله: 794 تعداد دریافت فایل اصل مقاله: 567 |