
تعداد نشریات | 43 |
تعداد شمارهها | 1,705 |
تعداد مقالات | 13,957 |
تعداد مشاهده مقاله | 33,467,222 |
تعداد دریافت فایل اصل مقاله | 13,270,036 |
Upper bounds on the uniform spreads of the sporadic simple groups | ||
International Journal of Group Theory | ||
مقاله 3، دوره 8، شماره 3، آذر 2019، صفحه 15-31 اصل مقاله (238.93 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2018.111238.1478 | ||
نویسندگان | ||
Ali Raza Rahimipour* 1؛ Yousof Farzaneh2 | ||
1Mathematics, Faculty of Science, University of Qom. Qom, Iran | ||
2Department of Mathematics, Faculty of Science, Iran University of Science & Technology, Tehran, Iran | ||
چکیده | ||
A finite group $G$ has uniform spread $k$ if there exists a fixed conjugacy class $C$ of elements in $G$ with the property that for any $k$ nontrivial elements $s_1, s_2,\ldots,s_k$ in $G$ there exists $y\in C$ such that $G = \langle s_i,y\rangle$ for $i=1, 2,\ldots,k$. Further, the exact uniform spread of $G$ is the largest $k$ such that $G$ has the uniform spread $k$. In this paper we give upper bounds on the exact uniform spreads of thirteen sporadic simple groups. | ||
کلیدواژهها | ||
Exact uniform spread؛ Exact spread؛ Sporadic group | ||
مراجع | ||
[1] R. Abb ott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh and R. Wilson, ATLAS of Finite Group Representations - Version 3. Available online http://brauer.maths.qmul.ac.uk/Atlas/ v3/. [2] M. Aschbacher and R. M. Guralnick, Some applications of the rst cohomology group, J. Algebra , (1984) 90 446{460. [3] G. J. Binder, The two-element bases of the symmetric group, Izv. Vyss. Ucebn. Zaved. Mathematika , (1970) 90 9{11. [4] J. D. Bradley and P. E. Holmes, Improved b ounds for the spread of sp oradic groups, LMS J. Comput. Math. , (2007) 10 132{140. [5] J. D. Bradley and J. Mo ori, On the exact spread of sp oradic simple groups, Comm. Algebra , (2007) 35 2588{2599. [6] J. L. Brenner and J. Wiegold, Two-generator groups I, Michigan Math. J. , (1975) 22 53{64. [7] T. Breuer, R. M. Guralnick and W. M. Kantor, Probabilistic generation of nite simple groups I I, J. Algebra , (2008) 320 443{494. [8] W. Bosma and J. J. Cannon, Handbook of Magma functions , Scho ol of Mathematics and Statistics, University of Sydney, Sydney, 1995. http://magma.maths.usyd.edu.au/magma/faq/citing . [9] T. Burness and S. Guest, On the uniform spread of almost simple linear groups, Nagoya Math. J. , (2013) 209 35{109. [10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An ATLAS of Finite Groups , Oxford: Oxford University Press, 1985. [11] B. Fairbairn, New Upp er Bounds On the spreads of the sp oradic simple groups, Comm. Algebra , (2012) 40 1872{ 1877. [12] B. Fairbairn, The exact spread of M 23 is 8064, Int. J. Group Theory , (2012) 1 1-2. [13] S. Ganief and J. Mo ori, On the spread of the sp oradic simple groups, Comm. Algebra , (2001) 29 3239{3255. [14] R. M. Guralnick and W. M. Kantor, Probabilistic generation of nite simple groups, J. Algebra , (2000) 234 743{792. [15] R. M. Guralnick and A. Shalev, On the spread of nite simple groups, Combinatorica , (2003) 23 73{87. [16] S. Harp er, On the uniform spread of almost simple symplectic and orthogonal groups, J. Algebra , (2017) 490 330{371. [17] G. A. Miller, On the groups generated by two op erators, Bul l. Amer. Math. Soc. , (1901) 7 424{426. [18] R. Steinb erg, Generators for simple groups, Canad. J. Math. , (1962) 14 277{283. [19] The GAP Group, GAP Groups, Algorithms, and Programming , (2014) Version 4.7.5, http://www.gap- system. org. [20] R. A. Wilson, The maximal subgroups of the baby monster I, J. Algebra , (1999) 211 1{14. [21] A. Woldar, The exact spread of the Mathieu group M 11 , J. Group Theory , (2007) 10 167{171. | ||
آمار تعداد مشاهده مقاله: 409 تعداد دریافت فایل اصل مقاله: 320 |