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ON MATRIX AND LATTICE IDEALS OF DIGRAPHS
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Abstract. Let G be a simple, oriented connected graph with n vertices and m edges. Let I(B) be

the binomial ideal associated to the incidence matrix B of the graph G. Assume that IL is the lattice

ideal associated to the rows of the matrix B. Also let Bi be a submatrix of B after removing the i-th

row. We introduce a graph theoretical criterion for G which is a sufficient and necessary condition

for I(B) = I(Bi) and I(Bi) = IL. After that we introduce another graph theoretical criterion for G

which is a sufficient and necessary condition for I(B) = IL. It is shown that the heights of I(B) and

I(Bi) are equal to n− 1 and the dimensions of I(B) and I(Bi) are equal to m− n+ 1; then I(Bi) is

a complete intersection ideal.

1. Introduction

It is so difficult to get information about the structure of an ideal or scheme by directly examining

its defining polynomials. But A good description of generators of an ideal of a ring, provides effective

tools to study the structure of the ideal. Monomial ideals in polynomial rings with coefficients in a

field are studied from this point of view and by using Gröbner bases, these ideals have been used to

study general ideals. The other ideals which are important are binomial ideals. Let K be a field.

A binomial is an element of a polynomial ring K[X] = K[x1, . . . , xm] with at most two terms; a

binomial ideal is one whose generators can be chosen binomial. This class of ideals introduced by
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Eisenbud and Sturmfels in 1995, and since then, these type of ideals, has been become the subject

of intensive research in Algebraic Geometry and Commutative Algebra. Since this class of ideals is

the meeting point of several branches of mathematics, i.e., linear algebra, combinatorics, commutative

algebra and algebraic geometry, provide the possibility to transfer a knowledge about one concept in

a filed to other field and formulate and prove a good theorem. The zero set of binomial ideals are

unions of toric varieties, which makes binomial ideals important in algebraic geometry, and is one

reason that combinatorial methods are very effective for studying them. These type of ideals has been

used to model some phenomena in biology (phylogenetic models), physics (string theory), statistics

(independence variables in joint distributions) and many new emerging applications in other areas of

mathematics. The importance of the binomial ideals encourages mathematicians to study these ideals

deeper and in more details [see [6]].

Beyond their intrinsic interest, binomial ideals arise naturally in various contexts, such as combi-

natorial game theory, algebraic statistics and dynamics of mass action kinetics. These ideals are also

very important in the study of hypergeometric differential equations, as is shown in [1],[3].

In this paper, special binomial ideals are considered which are obtained from the incidence matrix

of a connected oriented graph.

Throughout this paper, we assume G is a simple, connected oriented graph with n vertices and m

edges. I.e., each edge e of G is an ordered pair (u, v), where u is called the tail of the edge and v is

called the head of the edge. Also we let every vertex of this graph has both input and output edges.

Moreover, let B = (hij) be the incidence matrix of G, whose entries is defined as

hij =


−1 if ej exits from vi,

1 if ej enters to vi,

0 otherwise.

Also let Bi be a submatrix of B after removing the i-th row. In addition, assume L is the lattice

generated by the rows of B.

In this paper a graph theoretical criterion is defined for the graph G which is a sufficient and

necessary condition that guarantees equality of lattice basis ideals of matrices B and Bi. Also other

graph theoretical criterion for the graph G is introduced that again is a sufficient and necessary

condition for the lattice basis ideal of the matrix B to be prime. Finally it is shown that the hieght

and dimension of the lattice basis ideal of the matrices B and Bi can be computed just by the numbers

of the vertices and edges of the graph.

2. Preliminaries

A lattice L ⊆ Zm is called saturated, if for any b ∈ Z,Y ∈ Zm; bY ∈ L implies that Y ∈ L.

Suppose {u1, . . . ,un} is a basis for the saturated lattice L, and B is a matrix with rows u1, . . . ,un.
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Two binomial ideals are associated to the lattice and the matrix:

IL = ⟨Xu −Xv|u,v ∈ Nm,u− v ∈ L⟩

and

I(B) = ⟨Xui+ −Xui−|ui = ui +−ui−, 1 ≤ i ≤ n⟩,

where u+ and u− are, respectively, the positive and negative parts of the vector u. That is, if (u)i is

the i-th coordinate of u, then we set the i-th coordinate (u+)i, of u+ equal to max{0, (u)i}. Similarly,

(u−)i = max{0,−(u)i}. Also for any α = (α1, . . . , αm) ∈ Zm≥0, we denote the monomial xα1
1 . . . xαm

m

by Xα.

From definitions of these two ideals, it follows that I(B) ⊂ IL and an important question in this

regard (see [8, Remark 2.3]), is to find necessary and sufficient conditions for which this inclusion being

equality. In this paper, we are going to answer this question for a special class of incidence matrices

coming from oriented graphs.

For our main results, we require that the matrix B be in a special form, which were defined in [7],

For ease of reference, we quote them here:

Definition 2.1. A matrix B is called mixed if every row of B contains both a positive and negative

entry.

In other words, if we consider each row of the matrix B as a vector u, then this definition means

that the conditions u+ ̸= 0 and u− ̸= 0 should be hold.

Definition 2.2. A matrix B is called dominating if it does not contain a square mixed submatrix.

By using this notion, a simple characterization for the equality I(B) = IL is given, i.e., I(B) = IL

if and only if B is a dominating matrix [7, Theorem 2.9].

In [8] it is proved that IL is a minimal prime of I(B). Moreover, in [8], by introducing the following

notion, the authors determined other minimal prime ideals of I(B).

Definition 2.3. A matrix B is called irreducible if:

(1) B is a mixed s× t matrix where t ≤ s, and

(2) one cannot bring B into the following form after permutation its rows and columns,

B =

(
N′ M′

0 D′

)
,

where N′ is a s′ × t′ mixed matrix with t′ ≤ s′ and D′ is a (s − s′) × (t − t′) matrix with

t− t′ ≥ s− s′.
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In [8, Theorem 2.1], it was proved that P is a minimal prime of I(B) if and only if P corresponds

to the following decomposition in which N is irreducible;

B =

(
N M

0 D

)
.

3. Main results

Since the sum of the columns of the incidence matrix B is zero, the rows of this matrix are not

independent, and previous definitions are applied to full rank matrices, so we can remove arbitrarily

any row of B , say i-th row and denote the new matrix by Bi. Notice that for all i ∈ {1, · · · , n},

−ui = u1 + · · ·+ ui−1 + ui+1 + · · ·+ un.

Lemma 3.1. The lattice L is saturated.

Proof. Since every column of the matrixB has one +1 and one−1, the matrixB is a totally unimodular

matrix, i.e., all subdeterminants equal to 1,−1 or 0 [10, Theorem 19.3] . Now by [10, Corollary 4.1c],

the claim is proved. □

Let A = {1, . . . , n}, and P(A) be the set of all nonempty subsets of A and u1, . . . ,un ∈ Zm.
For any u ∈ Zm We denote Xu+ − Xu− by F (u) and for any W ∈ P(A), uW =

∑
w∈W uw and

I(P(A)) = ⟨F (uW )|W ∈ P(A)⟩. Now suppose u1, . . . ,un ∈ Zm are the rows of B. By the following

proposition we can provide a specific finite set of generators for the ideal IL .

Proposition 3.2. With the above mentioned notations I(P (A)) = IL.

Proof. It is clear that I(P (A)) ⊂ IL. Hence we should show the reverse inclusion. Let w ∈ L, then

we can write w =
∑n

i=1 λiui. Three cases may arise.

Case 1: For every 1 ≤ i ≤ n, let λi ≥ 0. By induction on λ = maxi λi, we will prove F (w) ∈ I(P(A)).

If λ = 1 the assertion is clear. Suppose λ > 1. Put w1 =
∑

λi>0(λi − 1)ui and w2 = −
∑

λi=0 ui,

then w = w1+w2. By induction hypothesis, F (w1) and F (w2) are contained in I(P(A)). If for some

1 ≤ j ≤ m, the j-th entry of w2 is less than 0, then the j-th entry of w1 is less than or equal to 0,

hence by [4, Lemma 1.4], F (w) ∈ I(P(A)).

Case 2: Let for all i, λi ≤ 0. This case will follow by a similar argument as the case 1.

Case 3: Let for all i, 1 ≤ i ≤ r, λi ≥ 0 and for all i, r + 1 ≤ i ≤ n, λi ≤ 0. Put a =
∑r

i=1 λiui and

b =
∑n

i=r+1 λiui, then w = a + b. By case 1, F (a) ∈ I(P(A)) and by case 2, F (b) ∈ I(P(A)). Let

the k-th entry of a be positive, then the k-th entry of b is positive or 0, hence by [4, Lemma 1.4], the

claim will be followed. □
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Let L = ⟨u1, . . . ,un⟩ where ui’s are the rows of the incidence matrix B of the directed graph G.

Also let Q1, . . . , Qs be all directed cycles of G and vertices of every Qi be vi1 , . . . , viri , and,

fQi = fui1
+···+uiri

= F (ui1 + · · ·+ uiri ).

Since G is a simple directed graph, by [4, Lemma 1.4], it is obvious that,

fui+uj ∈ ⟨fui , fuj ⟩, for all i, j; 1 ≤ i, j ≤ n, i ̸= j.

So we can delete all fui+uj ’s from the generating set of I(P(A)). Now consider ui,uj ,uk. The only

case in which the hypotheses of [4, Lemma 1.4], are not hold, is that the associated vertices vi, vj , vk

form a directed cycle in G. Otherwise

fui+uj+uk
∈ ⟨fui , fuj , fuk

⟩.

By arguing in this way, we obtain:

IL = ⟨fu1 , . . . , fun , fQ1 , . . . , fQs⟩.

By our assumption regarding the graphG, it is clear that L = ⟨u1, . . . ,ui−1,ui+1, . . . ,un⟩ for every 1 ≤
i ≤ n. Moreover, let vi be any vertex of the graph and Qc1 , . . . , Qct be the cycles, if any, of G\{vi}.
Then we can again reduce the generators of the IL. This argument can be considered as a proof for

the following proposition.

Theorem 3.3. With the above assumptions, we have:

IL =< fu1 , . . . , fui−1 , fui+1 , . . . , fun , fQc1
, . . . , fQct

> .

Remark 3.4. Note that the generators of IL, for which proposed in Theorem 3.3, is not minimal.

For example, let vi be the vertex of G which occurs in the most cycles of G, then the graph G\{vi} has

the least number of cycles, and hence the number of the generators in the right hand side of the above

equality can be lowered.

Definition 3.5. If G has a vertex vi such that by removing it, the graph G\{vi} does not have any

directed cycle, then G is called i-cycleless.

Remark 3.6. Theorem 3.3 shows that if the graph G is an i-cyclelss graph, then we have:

IL = I(Bi).

The converse of this fact will be proved in Proposition 3.15.

Definition 3.7. An edge of a oriented graph G is called a hanging edge of a cycle C in G if it shares

only one of its vertices with C.

We break down the set of hanging edges of an oriented graph G with respect to a cycle C in G, into

the inward hanging edges and outward hanging edges.

http://dx.doi.org/10.22108/toc.2017.105701.1510

http://dx.doi.org/10.22108/toc.2017.105701.1510


40 Trans. Comb. 7 no. 2 (2018) 35-46 H. Damadi and F. Rahmati

Theorem 3.8. Let G be a graph with n vertices and m edges. Then G is an i-cycleless graph if and

only if I(B) = I(Bi).

Proof. Let G be an i-cycleless graph. By Theorem 3.3, I(Bi) = IL, since I(Bi) ⊆ I(B) ⊆ IL so

I(Bi) = I(B).

Now suppose that for some i, I(Bi) = I(B). For simplification of the argument let i = n. Assume

G\{vn} has the following directed cycle, Q = {vi1 , . . . , vir}. Again, for simplification of the argument

let Q = {v1, . . . , vr}. Assume that the inward hanging edges of Q enter into the vertices, {vi1 , . . . , vis},
and outward hanging edges of Q exit from the vertices, {vj1 , . . . , vjt}. Then we have:

fQ = xi1 . . . xis − xjs+1 . . . xjt .

Since for all i, 1 ≤ i ≤ r, we have:

Xui+ ̸ |xi1 . . . xis , Xui− ̸ |xi1 . . . xis

and

Xui+ ̸ |xjs+1 . . . xjt , Xui− ̸ |xjs+1 . . . xjt .

Hence fQ can not be in ⟨fu1 , . . . , fur⟩.
Now let vr+1 be one of the vertices (outside of the cycle Q) into which some outward hanging edges

of the cycle enters. Suppose that;

fQ+ur+1 = Xa+ −Xa−.

Since Q and vr+1 are adjacent with another vertices of the graph, we have:

Xui+ ̸ |Xa+ , Xui− ̸ |Xa+ for all i with 1 ≤ i ≤ r + 1,

or

Xui+ ̸ |Xa− , Xui− ̸ |Xa− for all i with 1 ≤ i ≤ r + 1.

Thus

fQ+ur+1 ̸∈ ⟨fu1 , . . . , fur+1⟩.

If we continue arguing in this way, at first for vertices which some outward hanging edges of the cycle

Q enters to those, and second for vertices which are not adjacent to the cycle Q, and lastly for other

vertices, it follows that:

fQ+ur+1+···+un−1 ̸∈ ⟨fu1 , . . . , fun−1⟩.

As we know −un = u1 + · · ·+ un−1, so

fun ̸∈ ⟨fu1 , . . . , fun−1⟩,
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which is a contradiction, hence the claim is proved. Finally it is easy to see that if the both sets

of inward and outward hanging edges are empty simultaneously, or one of them is empty, the above

argument still works. □

Notation 3.9. We denote the set of edges associated to uk+,uk− by {uk+}, {uk−} respectively, that

is ei ∈ {uk+} and el ∈ {uk−} if (uk+)i and (uk−)l be one respectively. In fact, in the incidence

matrix, each column is associated to an edge. Hence {uk+} denotes the set of edges of the graph which

enter into vk, and {uk−} denotes the set of edges of the graph which exit from the vertex vk.

Definition 3.10. A directed cycle Q in a graph G is called terminal if there exist some vertices such

that all outward edges of these vertices enter into the cycle Q, and there exist some vertices such that

all inward edges of these vertices exit from the cycle Q.

A vertex for which all outward edges from it enter into the cycle, is called a source vertex. More-

over, a vertex for which all inward edges into it come from the cycle, is called a sink vertex.

Let vr be one of the sink vertices of the cycle and vr+t be one of the source vertices of the cycle.

Also let for all j, 0 ≤ j ≤ t− 1,

ψr+j
∪

{ur+j−} = ψr+j+1

∪
{ur+j+1+}

where ψr is the set of outward hanging edges of the cycle which don’t enter into vr, and for all j,

1 ≤ j ≤ t− 1,

ψr+j = λr+jQ ∪
r+j+1∪
k=r

λr+jk .

The set λr+jQ is the set of outward hanging edges of the cycle which don’t enter into vl’s, r ≤ l ≤ r+ j,

and λr+jk is the set of outward edges of vk which don’t enter into vl’s, k + 1 ≤ l ≤ r + j.

In other words, there is a labeling for the vertices which don’t contain in the cycle, such as k+1 ≤
l ≤ r + j, such that vr is one of the sink vertices of the cycle, vr+t is one of the source vertices of the

cycle, and all inward edges of vr+j , 0 ≤ j ≤ t, exit from Q, vr, . . . , vr+j−1.

Definition 3.11. The directed cycle C which is satisfied the above properties, is called neat terminal.

Definition 3.12. We call a graph neat terminal if all directed cycles of the graph is neat terminal.

Also, we call the graph i-neat terminal if the graph has a vertex vi such that all directed cycles which

don’t contain vi, be neat terminal.
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Example 1. Let G be the following graph:
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This graph is a neat terminal and 7-neat terminal graph.

In general the ideal I(B) is not prime. But the following theorem gives a criterion in terms of

properties of the graph G which guarantees this ideal would be prime.

Theorem 3.13. The ideal I(B) is a prime ideal if and only if the graph G is a neat terminal graph.

Proof. Let G be a neat terminal graph. By Theorem 3.3,

IL = ⟨fu1 , . . . , fun−1 , fun , fQ1 , . . . , fQt⟩,

where Q1, . . . , Qt are all the cycles of G. Since G is a neat terminal graph, we have:

−fQi = Xψrfur +Xψr+1fur+1 + · · ·+Xψr+jfur+j + · · ·+Xψr+tfur+t ,

where vr is the sink vertex of the cycle, and vr+t is the source vertex of the cycle, and the other vuj ’s

are vertices that the cycle doesn’t contain. Also Xψr+j is the monomial associated to ψr+j , that is

Xψr+j = xa11 . . . xamm , where ai is one, if ei ∈ ψr+j , otherwise ai is zero.

Hence for all i, 1 ≤ i ≤ t,

fQi ∈ ⟨fu1 , . . . , fun⟩.

That is I(B) = IL.

Conversely, let I(B) = IL. By Theorem 3.3,

IL = ⟨fu1 , . . . , fun , fQ1 , . . . , fQt⟩.

where Q1, . . . , Qt are all the cycles of G.

Since fQi ∈ ⟨fu1 , . . . , fun⟩, fQi must be in the following form;

−fQi = Xa −Xb,
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where for some k and k + s,

Xuk+|Xa and Xuk+s−|Xb.

First fuk
must multiplied by Xϕk , where ϕk is a set such that,

Xa = XϕkXuk+.

Now there must be a vertex, vk+1, and a set ϕk+1 such that

XϕkXuk− = Xϕk+1Xuk+1+.

By continuing this way, there must be the sets ϕk+j ’s, such that for all j, 0 ≤ j ≤ s− 1, we have:

Xϕk+jXuk+j− = Xϕk+j+1Xuk+j+1+.

Now assume that vk and vk+s are the sink and source vertices of the cycle respectively. By setting

ϕk+j = ψk+j , and by introduced labeling in the proof, the cycle is terminal. □

Corollary 3.14. The ideal I(B) is a prime ideal if and only if there is some positive integer i such

that G is an i-neat terminal graph.

Proof. Let I(B) is a prime ideal, so I(B) = IL. By Theorem 3.13, G is a neat terminal graph, hence

for all i, 1 ≤ i ≤ n, G is an i-neat terminal.

Conversely, suppose that for some i, G is an i-neat terminal graph. By Theorem 3.3, we have:

IL = ⟨fu1 , . . . , fui−1 , fui+1 , . . . , fun , fQ1 , . . . , fQt⟩.

Therefore, I(B) = IL. □

Proposition 3.15. The ideal I(Bi) is prime if and only if G is an i-cycleless graph.

Proof. First we prove that Bi is a dominating matrix if and only if G is an i-cycleless graph. Let Bi

be a dominating matrix. Since every mixed square submatrix of Bi is corresponded to a directed cycle

in G\{vi}, so G is an i-cycleless graph.

Conversely, let G be an i-cycleless graph. Since every directed cycle of G\{vi} is corresponded to a

mixed square submatrix of Bi, so Bi is a dominating matrix. Now by [7, Theorem 2.9], the claim is

followed. □

Note that to determine the minimal prime ideals of I(Bi), we must study the decompositions of

Bi. Due to the properties of Bi, the appropriate decomposition for Bi such that the block N being

irreducible, occurs only if N corresponds to a q-vertices directed cycle. Suppose {vj1 , . . . , vjq} are the

q vertices of the directed cycle, then:

Bi =

(
N M

0 D

)
, P = ⟨xj1 , . . . , xjq⟩+ ID
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where P is a minimal prime of I(Bi) and ID is the lattice ideal associated to the matrix D.

Lemma 3.16. With the above notations, the rank of the matrix D is equal to n− q − 1.

Proof. Let Cq be the q-vertices directed cycle and u be a vertex adjacent to Cq via an edge e. Since

every entry of the column corresponded to e, except in the u-th corresponding row, is zero, rank of

D will be increased by 1. Now let u be adjacent to v by e′ but v not adjacent to Cq. By adding the

rows corresponding to v and u, we have a column with entries 0 except one, then again the rank of D

is increased by 1. The same argument about other vertices proves the claim. □

Lemma 3.17. Let G be an oriented graph with n vertices and incidence matrix B. Let Bi be the

matrix which is obtained by removing its i-th row.

(1) If P is a minimal prime ideal of I(Bi) and If P ̸= IL then htP = n− 1.

(2) If P is a minimal prime ideal of I(B) and If P ̸= IL then htP ≥ n− 1.

Proof. (1) The required equality will be followed from Lemma 2.2, Corollary 3 of [9, Chap. 5, Sec.

14], and [6, Theorem 2.2 and Corollary 2.5], .

(2) Since I(Bi) ⊆ I(B) ⊆ IL, then by case (1), the claim is proved.

□

Lemma 3.18. With the same assumptions as in Lemma 3.17, let L be the lattice generated by rows

of B. Then ht IL = n− 1.

Proof. By Corollary 3 of [9, Chap. 5, Sec. 5], we have codim IL = ht IL. Since B is the incidence

matrix of an oriented graph, its rank is equal to n− 1. Hence by [6][Theorem 2.2 and Corollary 2.5],

we have

ht IL = codim IL = n− 1.

□

The facts proved in the above two lemmas, can be collected in the following Corollary.

Corollary 3.19. Let G be an oriented graph with n vertices and m edges. Let B be the incidence

matrix of G and let 1 ≤ i ≤ n be an arbitrary integer. Let Bi be the matrix obtained by removing i-th

row of B. Then ht I(Bi) = n− 1. Moreover, all minimal prime ideals of I(Bi) have the same hight,

i.e., I(Bi) is unmixed.

Corollary 3.20. With the assumptions as above, ht I(B) = n− 1.

Proof. Since I(Bi) ⊆ I(B) ⊆ IL, hence ht I(B) = n− 1. □

The following theorem shows that dimension of the quotient ring, depend only to the number of

vertices and edges of G and does not depend on the direction of edges of the graph.
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Theorem 3.21. Let R = K[x1, . . . , xm] and G be an oriented graph with n vertices and m edges. Let

B be the incidence matrix of G and let 1 ≤ i ≤ n be an arbitrary integer. Let Bi be the matrix obtained

by removing i-th row of B, then:

dim
R

I(Bi)
= m− n+ 1.

Proof. By definitions we have:

dim
R

I(Bi)
= max{dim R

Q
|Q ∈ SpecR, I(Bi) ⊂ Q}.

Now by Lemmas 3.17 and 3.18 the claim is proved. □

Corollary 3.22. With the above notations

dim
R

I(B)
= m− n+ 1.

Proof. Since IL is a minimal prime ideal of I(B) and heights of the other minimal prime ideals of I(B)

is greater than or equal to n− 1, the claim will follow. □

Corollary 3.23. The heights and dimensions of I(B) and I(Bi) are independent of the way G is

directed.

Proposition 3.24. Let G be an i-cycleless oriented graph with incidence matrix B. Then the ideal

I(B) is a complete intersection ideal.

Proof. By Corollary 3.19 ht I(B) = n − 1. Since I(B) = I(Bi) and I(Bi) is generated by n − 1

polynomials, then I(B) is a complete intersection ideal. □

Remark 3.25. Koszul complex provides a free complex for R
I(B) . It is proved that I(Bi) is a complete

intersection ideal, then Koszul complex provides a free resolution for R
I(Bi)

. Also as mentioned above if

G be a i-cycleless graph, I(Bi) = I(B), then in this case Koszul complex is a free resolution for R
I(B) .
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