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THE ANNIHILATOR GRAPH OF A 0-DISTRIBUTIVE LATTICE

SAEID BAGHERI∗ AND MAHTAB KOOHI KERAHROODI

Communicated by Dariush Kiani

Abstract. In this article, for a lattice L, we define and investigate the annihilator graph ag(L) of

L which contains the zero-divisor graph of L as a subgraph. Also, for a 0-distributive lattice L, we

study some properties of this graph such as regularity, connectedness, the diameter, the girth and its

domination number. Moreover, for a distributive lattice L with Z(L) ̸= {0}, we show that ag(L) = Γ(L)

if and only if L has exactly two minimal prime ideals. Among other things, we consider the annihilator

graph ag(L) of the lattice L = (D(n), |) containing all positive divisors of a non-prime natural number n

and we compute some invariants such as the domination number, the clique number and the chromatic

number of this graph. Also, for this lattice we investigate some special cases in which ag(D(n)) or

Γ(D(n)) are planar, Eulerian or Hamiltonian.

1. Introduction

For a commutative ring R with nonzero identity, let Z(R) be the set of zero-divisors. D.F. Anderson

and P. Livingston [5] introduced the zero-divisor graph of R, denoted by Γ(R), as the (undirected)

graph with vertex set Z(R)⋆ := Z(R) \ {0} and two distinct vertices x and y are adjacent if and

only if xy = 0. (The original definition has been appeared in Beck [9] and Anderson and Naseer [4]

considering all elements of the ring R as the vertex set). This graph has been extensively studied

and investigated by several authors (see for example [2], [4], [5], [7], [9] and [22]). For a survey article

about the zero-divisor graphs, the reader is refered to [11].
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This idea has been used and generalized in many different directions and many authors defined dif-

ferent graphs associated to algebraic structures in order to investigate the interplay between algebraic

features of an algebraic structure and graph theoretic properties of the corresponding graph. The

zero-divisor graph of a semigroup with a zero element has been defined by F. R. Demeyer et al. [12].

The total graph of a commutative ring, defined by D. F. Anderson and A. Badawi [6], is another graph

associated to a commutative ring. A new extension of the zero-divisor graph is the concept annihilator

graph AG(R) of a commutative ring R, defined by A. Badawi [8] which contains the zero-divisor graph

of R as a subgraph. The vertex set of this graph is Z(R)⋆ := Z(R) \ {0} and two distinct vertices

x and y are adjacent if and only if annR(xy) ̸= annR(x) ∪ annR(y). S. Dutta and Ch. Lanong [14]

investigated the annihilator graph of a finite commutative ring. They determined some conditions on

a ring under which its annihilator graph is complete or regular. Moreover, for most recent study in

this direction see [1] and [23].

There are many papers which interlink graph theory and lattice theory(see for example [10, 13,

15, 16, 17]). These papers discuss the properties of graphs derived from partially ordered sets and

lattices. The zero-divisor graph has been defined and investigated for lattices by some authors such

as E. Estaji and K. Khashyarmanesh [15] and V. Joshi and S. Sarode [21] and others. In fact, for a

lattice L with the bottom element 0, let Z(L) := {x ∈ L| ∃a ∈ L \ {0}; x ∧ a = 0}. Then the zero

divisor graph of L is the ( undirected ) graph with vertex set Z(L)⋆ := Z(L) \ {0} and two distinct

vertices x and y are adjacent if and only if x ∧ y = 0.

Let L be a lattice with the bottom element 0 and for a ∈ Z(L), let annL(a) = {r ∈ L| r∧a = 0}. In
this article, we introduce and investigate the annihilator graph ag(L) of L as the (undirected) graph

with vertex set Z(L)⋆ = Z(L) \ {0} and two distinct vertices x and y are considered to be adjacent

if and only if annL(x ∧ y) ̸= annL(x) ∪ annL(y). In fact, this graph contains the zero-divisor graph

Γ(L) as a subgraph. We study some basic properties of ag(L) such as the diameter, the girth, the

domination number and the regularity of this graph. In section 2, it is shown that for a 0-distributive

lattice L, the annihilator graph ag(L) is connected and its diameter is at most 2 (see Corollary 2.5).

Among other things, we prove that for a 0-distributive lattice L, if ag(L) is not identical to Γ(L),
then gr(ag(L)) = 3 (see Lemma 2.8). Also, if a bounded lattice L of finite length can be decomposed

as a product of at least two nonzero lattices, then we find a small upper bound for the domination

number of ag(L). Namely, we show that dt(ag(L)) ≤ 2 (see Theorem 2.12). This gives a (generalized)

lattice counterpart for [14, Proposition 2.6]. Furthermore, we show that for a nontrivial finite lattice

L, if ag(L) is a regular graph and Πj ̸=i|Lj | ∤ |Z(Li)
⋆|, then L is a product of at most two directly

indecomposable lattices, or L ∼= C2×C2 ×C2, where C2 is the two-element chain (see Theorem 2.11).

In section 3, we determine when ag(L) and Γ(L) are the same. In fact, we prove that for a

distributive lattice L with Z(L) ̸= {0} the annihilator graph ag(L) is identical to the zero-divisor

graph Γ(L) if and only if L has precisely two minimal prime ideals. Also, we show when ag(L) is a
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complete, a complete bipartite or a star graph. In section 4, we consider the annihilator graph ag(L)
of the lattice L = (D(n), |) containing all positive divisors of a non-prime natural number n and we

show that for this lattice if n has at least three distinct prime divisors, then ag(L) ̸= Γ(L). Moreover,

we compute some invariants such as the domination number, the clique number and the chromatic

number of the graph ag(L) associated to this lattice. Also, in this special case, we investigate some

more special cases in which ag(D(n)) or Γ(D(n)) are planar, Eulerian or Hamiltonian (see Theorem

4.3).

We recall some preliminary definitions, notations and properties of graphs and lattices. For unde-

fined concepts in graph and lattice theory the reader is refered to [26, 27] and [18] respectively. A

graph without any vertices (resp. edges) is called an empty graph (a null graph). A complete r-partite

graph is a graph whose vertex set is partitioned into r separated subsets such that each vertex is

joined to every other vertex that is not in the same subset. For positive integers m and n, the graph

Kn is a complete graph with n vertices and the graph Km,n is a complete bipartite graph, with parts

of sizes m and n. A complete bipartite graph K1,n is called a star graph. A graph G is said to be

connected if there is a path between every two distinct vertices. Also, G is called a regular graph if

the degree of all vertices in G are the same. A nonempty subset S of V (G) is called a dominating

set if every vertex in V (G) \ S is adjacent to at least one vertex in S. The domination number dt(G)

of G is the minimum cardinality of dominating sets in G. If dt(G) = γ, then every dominating set

with cardinality γ is called a γ-set of G. A clique of a graph G is a complete subgraph of G and the

maximum size of cliques in G is called the clique number of G and is denoted by ω(G).

For two elements a and b in a lattice (L,≤,∧,∨), we say that b covers a and write a ≺ b if a ⪇ b

and there is no element x in L such that a ⪇ x ⪇ b. Let L be a bounded lattice. An element a ∈ L
is called an atom (resp. coatom) if 0 ≺ a (resp. a ≺ 1). The set of all atoms in L is denoted by

A(L). A subset I of a lattice L is called an ideal if I contains the join of each pair of elements in I

and for every x ∈ I and a ∈ L, a∧ x ∈ I. A filter in L is defined dually. For every element a ∈ L, the
principal filter (ideal) generated by a is denoted by [a) ((a]). A proper ideal P of a lattice L is called

a prime ideal if for each a, b ∈ L, a ∧ b ∈ P implies that a ∈ P or b ∈ P .

2. Some fundamental Properties of ag(L)

Let L be a lattice with the bottom element 0. We recall that the annihilator graph ag(L) of L is

the (undirected) graph whose vertex set is Z(L)⋆ = Z(L) \ {0} and two distinct vertices x and y are

adjacent if and only if annL(x ∧ y) ̸= annL(x) ∪ annL(y). In this section we state some basic results

about the annihilator graph ag(L) which are used in the next sections.

Definition 2.1. A lattice L with the bottom element 0 is said to be 0-distributive if the equalities

a ∧ b = 0 = a ∧ c imply that a ∧ (b ∨ c) = 0.
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Example 2.2. As a well-known lattice, we consider L := D(30) = {1, 2, 3, 5, 6, 10, 15, 30} containing

all natural divisors of 30 which is a distributive lattice with the order defined by divisibility. For every

x, y ∈ L, the meet x∧ y and the join x∨ y are defined to be the greatest common divisor and the least

common multiple of x and y respectively. As we see in the following figures, the zero-divisor graph

Γ(L) is a proper subgraph of the annihilator graph ag(L). For example,

{1, 3, 5, 15} = annL(2) = annL(gcd(6, 10)) ̸= annL(6) ∪ annL(10) = {1, 3, 5}.

Therefore, the vertices 6 and 10 are adjacent in ag(L) but not in Γ(L). For an investigation of the

graphs associated to this kind of lattices in a more general case, see Theorem 4.3.

Lemma 2.3. Let L be a 0-distributive lattice and x and y be distinct elements in Z(L)⋆. Then the

following statements hold:

(1) If x ∈ L, then annL(x) is an ideal of L.
(2) x and y are not adjacent in ag(L) if and only if annL(x) ⊆ annL(y) or annL(y) ⊆ annL(x).

(3) x and y are not adjacent in ag(L) if and only if annL(x ∧ y) = annL(x) or annL(x ∧ y) =

annL(y).

(4) If x− y is an edge of Γ(L), then x− y is an edge of ag(L). In fact, Γ(L) is subgraph of ag(L).
(5) If dΓ(L)(x, y) = 3, then x− y is an edge of ag(L).
(6) If x and y are not adjacent in ag(L), then there is a vertex ω ∈ Z(L)⋆ \ {x, y} such that

x− ω − y is a path in Γ(L) and hence x− ω − y is also a path in ag(L).

Proof. (1) Let l1, l2 ∈ annL(x). Then l1 ∧ x = 0 = l2 ∧ x. Therefore, (l1 ∨ l2) ∧ x = 0, i.e.

l1 ∨ l2 ∈ annL(x).

(2) Suppose that x is not adjacent to y in ag(L). Then annL(x) ∪ annL(y) = annL(x ∧ y). If

annL(x) ⊈ annL(y), then we take an element a ∈ L such that a∧x = 0 but a∧ y ̸= 0. Now for

every b ∈ annL(y), b∨a ∈ annL(x∧y) = annL(x)∪annL(y). This implies that b∨a ∈ annL(x)
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or b∨ a ∈ annL(y). The second possibility yields a contradiction and the first one implies that

b ∈ annL(x). This means that annL(y) ⊆ annL(x).

Conversely, assume that annL(x) ⊆ annL(y). On contrary suppose that annL(x)∪annL(y) ̸=
annL(x∧ y). Thus annL(x∧ y) ⊈ annL(y). Therefore, there exists an element z ∈ annL(x∧ y)

such that z ∧ y ̸= 0 and so z ∧ y ∈ annL(x) ⊆ annL(y) which is a contradiction.

(3) By part (2) is trivial.

(4) Suppose that x − y is an edge of Γ(L). Then x ∧ y = 0 and hence annL(x ∧ y) = L. Since

(x ∨ y) ∧ x = x ̸= 0 and (x ∨ y) ∧ y = y ̸= 0, annL(x ∧ y) ̸= annL(x) ∪ annL(y). Thus we must

have x− y as an edge in ag(L).
(5) Suppose that dΓ(L)(x, y) = 3. Then there are α, β ∈ Z(L)⋆ such that x ∧ α = 0, y ∧ β = 0 and

x ∧ β ̸= 0, y ∧ α ̸= 0. Therefore annL(x) ⊈ annL(y) and annL(y) ⊈ annL(x). Hence x − y is

an edge of ag(L) by part (2).

(6) Suppose that x and y are not adjacent in ag(L). Then there is a nonzero element ω ∈
annL(x) ∩ annL(y), by (2). Since x ∧ y ̸= 0, we have ω ∈ Z(L)⋆ \ {x, y}. Hence x− ω − y is a

path in Γ(L), and thus x− ω − y is a path in ag(L) by (4).

□

We recall that for vertices x and y in a graph G, let d(x, y) be the length of a shortest path from x

to y. The diameter of G is diam(G) = sup{d(x, y) : x, y ∈ V (G)}. It is well-known that for a lattice L
with 0, diam(Γ(L)) ≤ 3 (see [19]). The following corollaries can be easily obtained from parts (4),(5)

and (6) of Lemma 2.3.

Corollary 2.4. For a 0-distributive lattice L, if dag(L)(x, y) = 2, then dΓ(L)(x, y) = 2.

Corollary 2.5. Let L be a 0-distributive lattice with Z(L) ̸= {0}. Then ag(L) is connected and its

diameter is at most 2.

It has been shown in [15, Proposition 3.8] that every isomorphism f : L → S between finite lattices

induces a graph isomorphism f : V (Γ(L)) → V (Γ(S)) between the zero-divisor graphs associated to

these lattices. As we state in the following proposition, a similar result is also true for the annihilator

graphs.

Proposition 2.6. Let L and S be lattices with bottom element 0. If f : L → S is a lattice isomorphism,

then f |Z(L)⋆ : V (ag(L)) → V (ag(S)) defines a graph isomorphism.

Proof. Let a − b be an edge in ag(L). This means that there exists an element x ∈ L such that

x∧a∧ b = 0 and x∧a ̸= 0 and x∧ b ̸= 0. Thus, f(x) ∈ annS(f(a)∧ f(b)) \ (annS(f(a))∪ annS(f(b))),

as desired. □
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Remark 2.7. As it has been shown in [15, Example 3.9], the converse of Proposition 2.6 does not

hold. In fact, if we consider L = {∅, {1}, {2}, {1, 2}} and S = {∅, {1}, {2}, {1, 2}, {1, 2, 3}} with two

operations ∩ and ∪, then ag(L) = Γ(L) = Γ(S) = ag(S) but L ≇ S.

In some important special cases, the following lemma and its corollary help us to determine when

ag(L) = Γ(L). They will be also used to find the girth of the annihilator graph ag(L) (see Theorems

3.9 and 3.11).

Lemma 2.8. Let L be a lattice with bottom element 0 and there exist two distinct elements x, y ∈ Z(L)⋆

which are adjacent in ag(L) but they are not adjacent in Γ(L). Then gr(ag(L)) = 3 and there is a

cycle C in ag(L) in which no pair of distinct vertices are adjacent in Γ(L).

Proof. Suppose that x−y is an edge of ag(L) which is not an edge of Γ(L). Then x∧y ̸= 0 and there is

an ω ∈ annL(x∧y)\{x, y} such that ω∧x ̸= 0 and ω∧y ̸= 0. Now y ∈ annL(x∧ω)\(annL(x)∪annL(ω)),
implies that x − ω is an edge of ag(L). Similarly, x ∈ annL(y ∧ ω) \ (annL(y) ∪ annL(ω)) yields that

y − ω is an edge of ag(L). Hence x− ω − y is a path in ag(L) which is not a path in Γ(L). It is clear
that C : x− ω − y − x is a cycle in ag(L) of length three and no edge of C is an edge of Γ(L). □

Corollary 2.9. Let L be a lattice with bottom element 0 such that ag(L) ̸= Γ(L). Then gr(ag(L)) = 3.

Furthermore, there is a cycle C of length three in ag(L) such that no edge of C is an edge of Γ(L).

A lattice L is called directly indecomposable if L has no representation in the form L = A × B,

where both A and B have more than one element. It has been shown in [14, Proposition 2.5] that for

a finite commutative ring R with identity if the annihilator graph AG(R) is regular, then R ∼= F× F,
where F is a field, or R ∼= Z2 × Z2 × Z2 or R is a local ring. In Theorem 2.11, we determine some

conditions on a finite lattice L under which the annihilator graph ag(L) is regular.

Theorem 2.10. [18, Lamma 278] Let L be a bounded lattice. If L is of finite length, then L is

isomorphic to a direct product of directly indecomposable lattices.

Theorem 2.11. Let L ∼= L1×· · ·×Ln be a finite lattice such that every Lj is a directly indecomposable

component of L and |L| ≥ 2. If ag(L) is a regular graph and Πj ̸=i|Lj | ∤ |Z(Li)
⋆| for all i ∈ {1, . . . , n},

then L is a product of at most two directly indecomposable lattices or L ∼= C2 × C2 × C2 where C2 is

the two-element chain.

Proof. We consider different cases about n, the number of directly indecomposable components of

L. If n = 1, then L is directly indecomposable. So we assume that n ≥ 2. If at least one Li

contains a nonzero zero-divisor, without loss of generality let L1 contains y1 ∈ Z(L1)
⋆ ∩ A(L1).

Now if we consider e1 = (1, 0, . . . , 0) and y = (y1, 0, . . . , 0), then (t1, . . . , tn) ∈ Nag(L)(e1) if and only if

annL(t1, 0, . . . , 0) ̸= annL(t1, . . . , tn)∪annL(e1), and this is in turn equivalent to say that (t1, . . . , tn) ∈
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Z(L1)×L2×· · ·×Ln\(Z(L1)×{0}×· · ·×{0}). Therefore degag(L)(e1) = |Z(L1)|(|L2| · · · |Ln|−1). Since

y1 is an atom, with a similar argument it can be proved that degag(L)(y) = |Z(L1)\[y1)||L2| · · · |Ln|−1,

where [y1) is the filter generated by y1. Now using the assumption Πn
j=2|Lj | ∤ |Z(L1)

⋆|, implies

that degag(L)(e1) ̸= degag(L)(y) which contradicts the regularity of ag(L). We assume n ≥ 2 and

Z(Li) = {0}, for each i = 1, . . . , n. Therefore Nag(L)(e1) = {y ∈ Z(L)⋆| e1 ∧ y = 0} and degag(L)(e1) =

|L2| · · · |Ln| − 1. With a similar argument for every i = 1, . . . , n, if we take ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 occures only in the ith component and every other component is zero, then degag(L)(ei) =

|L1| · · · |Li−1||Li+1| · · · |Ln| − 1. By regularity of ag(L), we obtain |L1| = · · · = |Ln| := t.

In case n ≥ 3, let z = (1, 1, 0, . . . , 0). Then degag(L)(z) = (t(n−2) − 1) + 2(t − 1)(t(n−2) − 1). Now

if n ≥ 4, it can be easily seen that degag(L)(e1) ≨ degag(L)(z) which contradicts the regularity of the

graph. In case n = 3, the equality degag(L)(e1) = degag(L)(z) implies that |L1| = t = 2. This means

that L ∼= C2 × C2 × C2. In case n = 2, ag(L) = Γ(L) = Kt−1,t−1 and L ∼= L1 × L1. □

It has been shown in [14, Proposition 2.6] that for a finite commutative ring R, the domination

number of the annihilator graph AG(R) is at most 2. In the following theorem, we show that a similar

(generalized) assertion is true for the annihilator graph of a bounded lattice L such that it is a direct

product of two lattices.

Theorem 2.12. Let L be a bounded lattice which is a direct product of two lattices. Then dt(ag(L)) ≤
2.

Proof. Let L ∼= L1 × L2, for some lattices L1 and L2. Now let A1 = {(x1, 0)|x1 ∈ L⋆
1}, A2 =

{(0, x2)|x2 ∈ L⋆
2}, C1 = {(x1, x2)|x1 ∈ Z(L1)

⋆, x2 ∈ L⋆
2} and C2 = {(x1, x2)|x1 ∈ L⋆

1, x2 ∈ Z(L2)
⋆}.

Then Z(L)⋆ = A1 ∪ A2 ∪ C1 ∪ C2. We claim that D = {x = (1, 0), y = (0, 1)} is a dominating set

of ag(L). Let z = (z1, z2) ∈ Z(L)⋆ \ D. If z is an element of A1 or A2, then z is adjacent to x

or y. Therefore without loss of generality assume that z ∈ C1. Then annL(x ∧ z) = annL(z1, 0) =

A2 ∪ {(q, t)|q ∈ annL1(z1), t ∈ L2}. Moreover, annL(x) = A2 ∪ {(0, 0)} and if z2 /∈ Z(L2), then

annL(z) = {(q, 0)|q ∈ annL1(z1)} and otherwise annL(z) = {(q1, q2)|q1 ∈ annL1(z1), q2 ∈ annL2(z2)}.
Thus z is adjacent to x and we conclude that D is a dominating set of ag(L). □

We recall that a lattice L is of finite length n if there is a chain in L of length n and all chains in

L are of length ≦ n. A lattice L is of finite length if it is of length n for some natural number n. A

lattice L is called atomic if for every nonzero element a ∈ L, there exists an atom e ∈ L such that

e ≤ a. Every lattice which satisfies the descending chain condition is atomic. In particular, every

lattice of finite length is atomic (see [18, Exercises 6.18, 6.19 and 6.20]).

Proposition 2.13. Let L be a bounded lattice of finite length. Then there exists a vertex in ag(L)
which is adjacent to all other vertices of ag(L) if and only if either L ∼= C2×L′

, where L′
is a directly
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indecomposable lattice with only one atom or L is a directly indecomposable with an atom which is

adjacent to all other vertices of ag(L).

Proof. By Theorem 2.10, L ∼= L1 × · · · × Ln such that for each i with 1 ≤ i ≤ n, Li is a directly

indecomposable lattice. Suppose x = (x1, . . . , xn) ∈ Z(L)⋆ is a vertex which is adjacent to all other

vertices of ag(L). First we assume that n ≥ 3. Let x
′
= (0, . . . , 0, xi, 0, . . . , 0) where xi is a nonzero

component of x in the ith position. Then annL(x ∧ x
′
) = annL(x

′
). This yields x = x

′
. Now let

x
′′
= (0, . . . , 0, 1, xi, 0, . . . , 0) ∈ Z(L)⋆. Then annL(x∧x

′′
) = annL(x), which implies that x

′
= x = x

′′
.

From this contradiction, we must have n ≤ 2. If n = 1 and |A(L)| = 1, then ag(L) is an empty

graph. Otherwise, if |A(L)| ≥ 2, then |Z(L)⋆| ≩ 1. In this case for each l ∈ Z(L)⋆ \ A(L) there is

an atom e where e ≨ l and annL(e ∧ l) = annL(e). Hence x must be an atom which is adjacent to

all other vertices. Now for n = 2, L ∼= L1 × L2, let x = (x1, x2) ∈ Z(L)⋆, x1 ̸= 0 and x2 ̸= 0. Since

(x1, 0) ∈ Z(L)⋆ is not adjacent to x, we must have x = (x1, 0) and it can be easily shown that x1 ∈ L1

is the only atom in L1. Also for each l ̸= x1 of L1, (l, 0) ∈ Z(L)⋆ is not adjacent to x. Therefore, L1

is a directly indecomposable lattice isomorphic to C2. Now if L2 contains at least two atoms e
′
1 and

e
′
2, then (x1, e

′
1) ∈ Z(L)⋆ is not adjacent to x. This means that the statement holds. The “if” portion

follows trivially. □

Corollary 2.14. Let L be a bounded lattice of finite length and ag(L) ̸= ∅. Then ag(L) is a complete

graph if and only if L ∼= C2 × C2 or Z(L)⋆ = A(L).

Proof. If ag(L) is a complete graph by Proposition 2.13, we have the following two cases:

Case(1): L ∼= C2 × L′
such that L′

is a directly indecomposable lattice with only one atom e
′
1.

Now since for each l
′ ∈ L′

which is not an atom, the vertex (0, l
′
) is not adjacent to (0, e

′
1), it can be

concluded that L′ ∼= C2.

Case(2): L is a directly indecomposable and there is an atom e ∈ L which is adjacent to every other

vertex. Whereas |A(L)| ≥ 2, assume on contrary that A(L) ⊊ Z(L)⋆ then there exists l ∈ Z(L)⋆\A(L)
such that l ∧ e = 0 for each atom of L this is a contradiction, since L is atomic. □

3. Equality of ag(L) and Γ(L)

We recall that a lattice L is called a diamond if every element of L \ {0, 1} is both an atom and

a coatom. By [15, Proposition 3.4], the zero-divisor graph of a diamond D is a complete graph.

Therefore it is also identical to its annihilator graph ag(D). In this section, for a distributive lattice

L with 0, we investigate some conditions under which the graphs ag(L) and Γ(L) are identical.

At first we recall some results about Γ(L) which we will use latter.

Theorem 3.1. [25, Theorem 2.2]. Let L be a distributive lattice with the least element 0. Then

Γ(L) is a complete bipartite graph if and only if there exist prime ideals P1 and P2 in L such that

P1 ∩ P2 = {0}.
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Theorem 3.2. [21, Theorem 2.11]. Let L be a lattice with 0. Then the following statements are

equivalent.

(1) The zero-divisor graph Γ(L) is a complete bipartite graph.

(2) The zero-divisor graph Γ(L) is a bipartite graph.

Theorem 3.3. [21, Theorem 2.27]. Let L be a 0-distributive lattice and Z(L) = V (Γ(L)) ∪ {0} is

not an ideal. Then diam(Γ(L)) ≤ 2 if and only if L has exactly two minimal prime ideals.

Theorem 3.4. [3, Theorem 4.2]. Let P be a poset. Then the following assertions hold:

(1) gr(Γ(P )) ∈ {3, 4,∞}.
(2) gr(Γ(P )) = ∞ if and only if Γ(P ) is a star graph.

(3) gr(Γ(P )) = 4 if and only if Γ(P ) is a bipartite but not a star graph.

(4) gr(Γ(P )) = 3 if and only if Γ(P ) contains an odd cycle.

Lemma 3.5. Let L be a lattice with Z(L) ̸= {0}. Then:

If c ∨ z ∈ Z(L) with c ∈ annL(z) \ {0}, then annL(c ∨ z) ⊊ annL(z). In particular if Z(L) is an

ideal of L and c ∈ annL(z) \ {0}, then annL(c ∨ z) is properly contained in annL(z).

Proof. Since c ≤ (c ∨ z), c ∨ z ̸= 0 and c /∈ annL(c ∨ z). Hence annL(c ∨ z) ̸= annL(z) and since

z ≤ c ∨ z it follows that annL(c ∨ z) ⊊ annL(z). □

Theorem 3.6. Let L be a lattice such that Z(L) ̸= {0}. Then the following assertions are equivalent.

(1) ag(L) is complete;

(2) Γ(L) is complete.

Proof. (1) ⇒ (2). Let x and y be distinct elements in Z(L)⋆ which are adjacent in ag(L). We show

that x − y is an edge of Γ(L). Suppose on contrary that x ∧ y ̸= 0. Since x − y is an edge of ag(L),
we have annL(x ∧ y) ̸= annL(x), and thus x ∧ y ̸= x. Since we have annL(x ∧ (x ∧ y)) = annL(x ∧ y),

therefore x is not adjecent to x ∧ y in ag(L) which contradicts the completeness of ag(L). Hence

x ∧ y = 0 and x− y is an edge of Γ(L).
(2) ⇒ (1) is trivial. □

Remark 3.7. As we saw in Theorem 3.6, the completness condition for ag(L) is the same as that

of Γ(L). However, it can not concluded that each complete subgraph of ag(L) is a complete sub-

graph of Γ(L). For example, if we take L = D(210), the lattice of all natural divisors of 210, then

{6, 10, 15, 14, 21, 35} is a clique in ag(L), while the largest clique in Γ(L) has only 4 elements (see also

Theorem 4.3 part (4)).

The set of all maximal ideals of L is denoted by Max(L). A lattice L with the bottom element 0 is

called a semiprimitive lattice if
∩

Max(L) = {0}.
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Following Y.S. Pawar and N.K. Thakare [24], we call a bounded distributive lattice L a pm-lattice

(or a Gelfand lattice) if every prime ideal in L is contained in a unique maximal ideal. By [20, Theorem

2.11], for a semiprimitive pm-lattice L with |L| ≥ 5, the diameter Γ(L) is min{|Max(L)|, 3}. This

yields by Corollary 2.5 and Theorem 3.6:

Corollary 3.8. Let L be a semiprimitive pm-lattice with Z(L) ̸= {0} and |L| ≥ 5. Then diam(ag(L)) =
min{|Max(L)|, 2}.

Theorem 3.9. Let L be a distributive lattice with 0 such that Z(L) ̸= {0} and Z(L) is an ideal of L.
Then ag(L) ̸= Γ(L) and gr(ag(L)) = 3.

Proof. Let z ∈ Z(L)⋆, c ∈ annL(z) \ {0} and m ∈ annL(c ∨ z) \ {0}. Then m ∈ annL(c ∨ z) ⊊ annL(c)

and m ∧ c = 0. Since c ̸= 0, we have m ̸= c and since c ∧ (m ∨ z) = 0 and c ∧ (c ∨ z) = c ̸= 0, hence

c ∨ z ̸= m ∨ z. Now since (m ∨ z) ∧ (c ∨ z) = z ∨ (m ∧ c) = z ̸= 0, we have (c ∨ z) and (m ∨ z) are not

adjacent in Γ(L). Since c ̸= 0,m ̸= 0 it follows that (c ∨m) ∈ annL(z) \ (annL(c ∨ z) ∪ annL(m ∨ z))

and thus (c∨z)− (m∨z) is an edge of ag(L). Therefore ag(L) ̸= Γ(L) and gr(ag(L)) = 3 by Corollary

2.9. □

The following example shows that the assertion in the Theorem 3.9 does not hold if Z(L) is not an
ideal.

Example 3.10. Let L = {0, a, b, c, 1} be the lattice with 0 ≺ b ≺ a, 0 ≺ c ≺ a and b∥c. Then

Z(L) = {0, b, c} is not an ideal and ag(L) = Γ(L).

Theorem 3.11. Let L be a distributive lattice with zero, Z(L) ̸= {0} and |Min(L)| ≥ 3. Then

ag(L) ̸= Γ(L) and gr(ag(L)) = 3.

Proof. If Z(L) is an ideal of L, then ag(L) ̸= Γ(L) by Theorem 3.9. Now assume that Z(L) is not

an ideal of L. By Theorem 3.3, diam(Γ(L)) = 3. By Corollary 2.5 we have ag(L) ̸= Γ(L) and by

Corollary 2.9, gr(ag(L)) = 3. □
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Theorem 3.12. Let L be a distributive lattice with zero, Z(L) ̸= {0}. Then ag(L) = Γ(L) if and only

if |Min(L)| = 2.

Proof. Let ag(L) = Γ(L) and Z(L) ̸= {0}. By Theorem 3.9, Z(L) is not an ideal and by Theorem

3.3, L has exactly two minimal prime ideals. Conversely, suppose that |Min(L)| = 2 and let P1 and

P2 be the minimal prime ideals of L. By [20, Corollary 1.8] and [18, Exercise 1.34, Page 124],

P1 ∩ P2 = {0} and then Z(L) = P1 ∪ P2. Now let a − b be an edge in ag(L). If a, b ∈ P1, since

P1 ∩ P2 = {0}, thus a ∧ b ̸= 0 and it follows that annL(a ∧ b) = annL(a) = annL(b) = P2. Therefore a

and b are not adjacent in ag(L), a contradiction. Similarly, the assumption a, b ∈ P2 yields the same

contradiction. The only remained possibility is a ∈ P1, b ∈ P2. In this case a∧ b = 0. This means that

a− b is an edge of Γ(L) and therefore ag(L) = Γ(L). □

Let L be a distributive lattice with the bottom element 0. It has been shown in [20, Theorem 2.18]

that if there exists a vertex of Γ(L) which is adjacent to every other vertex, then |Min(L)| = 2.

Combining this result with Theorem 3.12, we obtain the following corollary:

Corollary 3.13. Let L be a distributive lattice with the bottom element 0 and Z(L) ̸= {0}. If there

exists a vertex of Γ(L) which is adjacent to every other vertex, then ag(L) = Γ(L).

Theorem 3.14. Let L be a distributive lattice with 0. Then the following assertions are equivalent:

(1) gr(ag(L)) = 4;

(2) ag(L) = Γ(L) and gr(Γ(L)) = 4;

(3) gr(Γ(L)) = 4;

(4) |Min(L)| = 2 and each minimal prime ideal of L has at least three distinct elements;

(5) Γ(L) = Km,n, m, n ≥ 2;

(6) ag(L) = Km,n, m, n ≥ 2.

Proof. (1) ⇒ (2). By Corollary 2.9 is trivial.

(2) ⇒ (3). It is obvious.

(3) ⇒ (4). Theorems 3.4 and 3.2 imply that Γ(L) is a complete bipartite graph but not a star

graph. By Theorem 3.1 there are prime ideals P1 and P2 such that P1 ∩P2 = {0} and Z(L) = P1 ∪P2

is not an ideal. Now the diameter of the complete bipartite graph Γ(L) is at most 2. By Theorem 3.3

and [18, Exercise 1.34, Page 124], P1 and P2 are the only minimal prime ideals in L and |Pi| ≥ 3 for

i ∈ {1, 2}.
(4) ⇒ (5). By [20, Corollary 1.8 ] and [18, Exercise 1.34, Page 124] and Theorem 3.1 the assertion

is clear.

(5) ⇒ (6). By Theorem 3.1, Theorem 3.3 and Theorem 3.12 this statement is explicit.

(6) ⇒ (1). The girth of every complete bipartite graph that is not a star graph equals 4. □
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Theorem 3.15. Let L be a distributive lattice with 0. Then the following assertions are equivalent:

(1) gr(ag(L)) = ∞;

(2) Γ(L) = ag(L), gr(ag(L)) = ∞;

(3) gr(Γ(L)) = ∞;

(4) |Min(L)| = 2 and at least one minimal prime ideal of L has exactly two distinct elements;

(5) Γ(L) = K1,n, n ≥ 1;

(6) ag(L) = K1,n, n ≥ 1.

Proof. (1) ⇒ (2). By Corollary 2.9 that is straightforward to verify.

(2) ⇒ (3). No challenges.

(3) ⇒ (4). By Theorem 3.4, Γ(L) is a star graph and by Theorem 3.1 there are prime ideals P1 and

P2 such that Z(L) = P1 ∪P2 and P1 ∩P2 = {0} . By Theorem 3.3 and hypothesis P1, P2 are the only

minimal prime ideals in L such that at least one minimal prime ideal of L has exactly two distinct

elements.

(4) ⇒ (5), (5) ⇒ (6) and (6) ⇒ (1). Similar to the preceding theorem. □

Corollary 3.16. Let L be a distributive lattice with 0. Then ag(L) = Γ(L) if and only if gr(ag(L)) =
gr(Γ(L)) ∈ {4,∞}.

4. The zero-divisor grph and the annihilator graph of the lattice D(n)

Let the natural number n has the prime decomposition n = pt11 · · · ptkk with ti ∈ N and k ≥ 2. Then

L := (D(n), |) is a bounded distributive lattice with the bottom element 1. For every x, y ∈ D(n) the

meet x ∧ y is the greatest common divisor of x and y and the join x ∨ y is the least common multiple

of them. In this section, we consider the zero-divisor graph Γ(L) and the annihilator graph ag(L)
associated to this lattice. We investigate some properties and invariants of these graphs. Among other

results, we compute the domination number, the clique number and the chromatic number of these

graphs. Also, we determine some cases in which these graphs are planar, Eulerian or Hamiltonian.

The vertex set in both graphs is

Z(L) \ {1} = {x ∈ D(n)|gcd(x, y) = 1, for some y ∈ D(n) \ {1}}.

In Γ(L), two distinct vertices x and y are adjacent if and only if gcd(x, y) = 1. The following lemma

gives a simple criterion for adjacence of vertices in ag(D(n)).

Lemma 4.1. Let n ≥ 4 be a non-prime natural number and L := (D(n), |) be the lattice of all natural

divisors of n. Then two vertices x and y are adjacent in ag(L) if and only if x has a prime divisor p

which is not a divisor of y and also y has a prime divisor q which is not a divisor of x.
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Proof. (⇒). Let x and y be two adjacent vertices in ag(L) and gcd(x, y) = d. annL(d) ̸= annL(x) ∪
annL(y) gives a natural number t with gcd(t, d) = 1, gcd(t, x) = x

′ ̸= 1 and gcd(t, y) = y
′ ̸= 1.

Therefore, there exists a prime divisor p of x
′
with p ∤ y. Also, there exists a prime divisor q of y

′
with

q ∤ x.
(⇐). Let p be a prime divisor of x such that p ∤ y and q be a prime divisor of y such that q ∤ x.

If gcd(x, y) = d, then gcd(pq, d) = 1, gcd(pq, x) = p ̸= 1 and gcd(pq, y) = q ̸= 1. This means that

pq ∈ annL(d) \ (annL(x) ∪ annL(y)). □

We recall that a graph G is said to be planar if it can be drawn in the plane in such a way that no

two edges meet each other except at a vertex. A graph is Hamiltonian if it has a spanning cycle. A

connected graph is Eulerian if it has a closed trail containing all edges.

Lemma 4.2. [27, Theorem 6B] A conneced graph G is Eulerian if and only if every vertex of G has

an even degree.

Theorem 4.3. Let n be a natural number and L = D(n) be the lattice containing all natural divisors

of n. If n has the prime decomposition n = pt11 · · · ptkk , with 1 ≤ t1 ≤ · · · ≤ tk and k ≥ 2, then

(1) The graphs ag(L) and Γ(L) are identical if and only if k = 2.

(2) If k = 2 and t1 = 1, then dt(ag(L)) = dt(Γ(L)) = 1.

(3) If n ̸= p1p
t2
2 , then:

(i) dt(Γ(L)) = k.

(ii) dt(ag(L)) = 2.

(4) ω(Γ(L)) = χ(Γ(L)) = k.

(5) ω(ag(L)) = χ(ag(L)) equals

(
k

k/2

)
or

(
k

(k − 1)/2

)
, if k is an even or odd number respectively.

(6) If k ≥ 4, then none of ag(L) or Γ(L) is planar.

(7) If k = 3, then ag(L) is planar if and only if t1 = t2 = t3 = 1.

(8) If k = 3, then Γ(L) is planar if and only if t1 = t2 = 1, t3 = 2 or t1 = t2 = t3 = 1.

(9) If k = 2, then ag(L) = Γ(L) is planar if and only if t1 ≤ 2.

(10) The case n = p1p2p
2
3 is the only case in which Γ(L) is planar but ag(L) is not.

(11) ag(L) is Eulerian if and only if for each 1 ≤ i ≤ k, ti is even.

(12) Γ(L) is Eulerian if and only if for each 1 ≤ i ≤ k, ti is even.

(13) Γ(L) is Hamiltonian if and only if k = 2 and t1 = t2 ≥ 2.

(14) Let for every i with 2 ≤ i ≤ k yield ti · · · tk ≤
∑

(tj1 · · · tjk−i+1
) where the sum varies over all

products of (k-i+1)-tuples of exponents of prime factors of n except ti · · · tk. Then ag(L) is

Hamiltonian.

Proof. (1) If k = 2, then ag(L) = Γ(L) = Kt1,t2 . Now let k ≥ 3. Then x = p1p2 and y = p1p3 are

adjacent in ag(L) but not in Γ(L). Therefore, ag(L) ̸= Γ(L).
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(2) Let n = p1p
t2
2 . Then ag(L) = Γ(L), by part (1). By Theorem 2.12, dt(ag(L)) = dt(Γ(L)) ≤ 2.

Also, it can be easily shown that if n = p1p
t2
2 then Γ(L) is a star graph and dt(Γ(L)) = 1.

(3) (i) For k ≥ 3, let Ai = {pαi1
i1

· · · p
αik−1

ik−1
|ij ̸= i, 1 ≤ j ≤ k − 1, 1 ≤ αij ≤ tij} ∪ {pαi

i |1 ≤ αi ≤ ti}.
Since every element in the first part of Ai is only adjacent to elements in the second part of Ai,

every dominating set in Γ(L) must have at least one element in Ai. Thus dt(Γ(L)) ≥ k. But it

is easy to see that {p1, . . . , pk} is also a dominating set. This means that dt(Γ(L)) = k. Now

for k = 2, if n = pt11 p
t2
2 with t1 ̸= 1, then Γ(L) is a complete bipartite graph and dt(Γ(L)) = 2.

(ii) For ag(L) in case k = 2, we have ag(L) = Γ(L) and the domination number computed

above. In case k ≥ 3, according to the Theorem 2.12, dt(ag(L)) ≤ 2. We show that dt(ag(L)) ̸=
1. If D = {x} is a dominating set, then x = pαi

i with 1 ≤ αi ≤ ti or x = p
αi1
i1

· · · pαis
is

, with

s ≥ 2. In the first case , xpj is not adjacent to x for every pj ̸= pi. In the last case, pi1 is not

adjacent to x. Therefore in any case dt(ag(L)) = 2.

(4) By [15, Theorem 5.13], the clique number of Γ(L) is the number of atoms in L which is equal

to k.Whereas k = ω(Γ(L)) ⩽ χ(Γ(L)) and vertices of graph can be partition into k mutually

disjoint parts each of which containing the multiples of pi which are not multiples of pj for any

j ≤ i− 1. Then χ(Γ(L)) ≤ k and therefore ω(Γ(L)) = χ(Γ(L)) = k.

(5) For obtaining the clique number and the chromatic number of ag(L), we note that for every

natural number t with 1 ≤ t ≤ k − 1, the set

{
t∏

i=1

qi|qi ∈ {p1, . . . , pk}}

is a clique in ag(L) of cardinality

(
k

t

)
. Now if k is an even number, the largest clique of this

kind is of cardinality

(
k

k/2

)
. This means that

(
k

k/2

)
≤ ω(ag(L)). On the other hand, we

can partition the vertex set of ag(L) into

(
k

k/2

)
seperated parts such that no two distinct

vertices in any part are adjacent. In other words ag(L) is a

(
k

k/2

)
-partite graph. Therefore

the chromatic number χ(ag(L)) is at most

(
k

k/2

)
. Consequently, ω(ag(L)) = χ(ag(L)) =(

k

k/2

)
. In case k is an odd number, a similar argument shows that ω(ag(L)) = χ(ag(L)) =(

k

(k − 1)/2

)
.
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(6) when k ≥ 4, Γ(L) has the subgraph:

(7) If k = 3 and n = pt11 p
t2
2 p

t3
3 with t3 ≥ 2 then ag(L) has the following complete bipartite

graph(Fig.4(b)) as a subgraph:

(8) For n = p1p2p
2
3, Γ(L) is planar, whereas for n = p1p2p

3
3 and n = p1p

2
2p

2
3 , Γ(L) has the sub-

graphs(Fig.5(b)) and (Fig.5(c)) respectively.
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(9) If n = pt11 p
t2
2 and t1 ≥ 3, then Γ(L) = ag(L) has the subgraph:

(10) As it can bee seen in parts (7)-(9), the graph Γ(L) is planar but ag(L) is not if and only if

n = p1p2p
2
3.

(11) We note that for every j with 1 ≤ j ≤ k − 1, pij ∈ {p1, . . . , pk} and 1 ≤ αij ≤ tij , we have

degag(L)(p
αi1
i1

· · · p
αij

ij
) = degag(L)(p

ti1
i1

· · · p
tij
ij
) = [

∏
s/∈{i1,...,ij}

(ts + 1)− 1][

j∏
k=1

(tik + 1)−
j∏

k=1

tik ].

Now if each i ∈ {1, . . . , k}, the power ti is even, then the degree of every vertex is even.

Conversely, assume that ag(L) is Eulerian. To the contrary, suppose that there exists an

odd exponent ti. Then for each j with j ̸= i, degag(L)(pj) =
∏

s̸=j(ts+1)−1 is an odd number.

This is a contradiction by Lemma 4.2.

(12) With a similar argument it can be easily seen that

degΓ(L)(p
αi1
i1

· · · p
αij

ij
) = degΓ(L)(p

ti1
i1

· · · p
tij
ij
) = [

∏
s/∈{i1,...,ij}

(ts + 1)]− 1.

(13) If k = 2 and t1 = t2 ≥ 2, then ag(L) = Γ(L) is a complete bipartite graph. Conversely, assume

that Γ(L) is a Hamiltonian. Suppose, by way of contradiction, that n has at least three factors.

Namely let n = pt11 p
t2
2 p

t3
3 and for eachi with 1 ≤ i ≤ 3, ti ̸= 1 (if ti = 1, then

n

pi
is a vertex

of degree 1 and so in this case Γ(L) can not be Hamiltonian). Then t1t2 ≤ t3, t1t3 ≤ t2 and

t2t3 ≤ t1 that is imposible. Also, if t1 ̸= t2, we can not obtain a Hamiltonian cycle. .

(14) At first consider

A1 = {pi22 · · · pikk | 1 ≤ ij ≤ tj , j ̸= 1},
A2 = {pi11 p

i3
3 · · · pikk | 1 ≤ is ≤ ts, s ̸= 2},

.

.

.

Ak−1 = {pi11 · · · pik−2

k−2 p
ik
k | 1 ≤ is ≤ ts, s ̸= k − 1},

Ak = {pi11 · · · pik−1

k−1 | 1 ≤ is ≤ ts, s ̸= k}.

It can be easily seen that for every m with 1 ≤ m ≤ k, |Am| = (t1 · · · tk)/tm. In particular

by assumption, |A1| = t2 · · · tk ≤
∑k

m=2(t1 · · · tk)/tm. Furthermore, no pair of elements in

any Am are adjacent. However, for l ̸= m, every element in Al is adjacent to to all elements

in Am. Now in order to obtain a Hamiltonian cycle, we start with p2 · · · pk ∈ A1. Using the
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assumption, we can distribute the elements of {Ak|2 ≤ k ≤ m}\{p1 · · · pk−1} between elements

in A1 and add the element p1 · · · pk−1 at the end to get a path of all divisors of n with k − 1

prime factors. As it can be easily seen, the last vertex p1 · · · pk−1 of this path is itself adjacent

to p3 · · · pk with k − 2 prime factors. Now we can continue this process inductively to obtain

a Hamiltonian cycle starting from p2 · · · pk with the end point p1.

□

Example 4.4. Let n = p1p2p3p
8
4. Then ag(L) is not Hamiltonian. However, if n = p1p2p3p

3
4. Then

ag(L) is Hamiltonian and we have the following Hamiltonian cycle.

p2p3p4 − p1p3p4 − p1p2p4 − p2p3p
2
4 − p1p3p

2
4 − p1p2p

2
4 − p1p3p

3
4 − p1p2p

3
4 − p2p3p

3
4 − p1p2p3−

− p3p4 − p2p3 − p1p4 − p2p4 − p1p
2
4 − p3p

2
4 − p1p

3
4 − p2p

2
4 − p1p3 − p2p

3
4 − p3p

3
4 − p1p2−

− p4 − p3 − p24 − p2 − p34 − p1 − p2p3p4.

Remark 4.5. The converse of the Part (14) of Theorem 4.3 is not true. For example if n = p1p2p3p
4
4

the conditions of this assertion are not satisfied but there is a Hamiltonian cycle in ag(L).
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